PREFACE
Dear colleagues, scientific articles written by leading and young scientists working in the field of metallurgy, materials science, electrochemistry, and physical-chemical research are presented in the third issue of the journal called "Complex Use of Mineral Resources" in 2019.
Currently, environmental issues and resource intensity are topical issues in the field of metal production. Due to the deterioration and depletion of high-quality deposits, the cost of mining and the production of metals increases, and in this connection man-made raw materials and secondary scrap are involved, as are rich sources of raw materials.
Today, our journal has the opportunity to promote scientific research throughout the world. It constantly improves its work, updates and is included in the CAS database, USA. The Institute of Metallurgy and Ore Benficiation is the owner of the journal, which became a member of the international association of connecting digital libraries for identifying objects of Crossref, the leading global DOI registration agency, and is its provider; the journal is also included in the electronic library eLIBRARY.RU, RISC. All rights of our authors are reserved by the CC BY-NC-ND license (Creative Commons Attribution Non-Commercial No Derivatives), which permits the use of articles indicating your authorship and prohibits the use for commercial purposes.
The editors of the journal express their deep gratitude to all reviewers who help select the best articles for publication and maintain the status of the journal at a high level.
Kenzhaliyev Bagdaulet – Editor-in-Chief, Doctor of Technical Sciences, Professor
E-mail: journal@kims-imio.kz
Title |
CONCENTRATION OF RARE-EARTH ELEMENTS BY SORPTION FROM SULPHATE SOLUTIONS |
Аuthors |
Kenzhaliyev B. K., Surkova t.Т.YU., Yessimova D. M. (Almaty, Kazakhstan) |
Author´s information |
Satbayev University, Институт Металлургии и Обогащения, Алматы, Казахстан Кenzhaliyev Bagdaulet Kenzhaliyevich - Doc.of Eng., Professor, General Director - Chairman of the Board of the Institute of Metallurgy and Ore Benefication, Vice-Rector for Scientific Research at Satbayev University,https://orcid.org/0000-0002-2618-9521, bagdaulet_k@mail.ru SurkovaTat'yanaYur'evna – Candidate of Eng., Senior Researcher of the B.B. Beisembayev Laboratory of Special Methods of Hydrometallurgy, Institute Metallurgy and Ore Benefication, https://orcid.org/0000-0001-8271-125X, E-mail: tu-surkova@mail.ru Yesimova Dinara Muratbekovna – Master of Eng. in Metallurgy, Engineer in Charge of the B.B.Beisembayev Laboratory of Special Methods of Hydrometallurgy, Institute of Metallurgy and Ore Benefication, https://orcid.org/0000-0002-1582-6732, E-mail: dina-28@inbox.ru |
Abstract |
Constantly increasing demand for rare-earth elements contributes to the involvement in the production of ore processing waste, the content of not extracted REE in which is quite large. One of the types of such waste is man-made mineral formations from the processing of phosphate uranium ores, which serve as raw materials for the production of REE concentrate at SARECO LLP. The technology for producing a concentrate includes the following redistribution: opening of raw materials cleaning of productive solutions from impurities; obtaining a concentrate on rare earth elements. One of the main disadvantages of this technology is the coprecipitation of almost 30% REE with ferrous cake when cleaning the most productive solution from impurities. To extract the rare earth elements ferrous cake is leached with sulphuric acid. The article studies the process of sorption from both model solutions that are similar in composition to the productive leaching of ferrous cake and directly from the productive ones, with the aim of further combining the resulting eluates with solutions supplied to precipitate REE.. Considerable attention has been paid to disrupt by ammonium salts. |
Keywords |
Rare-earth elements, technogenic mineral formations (TMF), ferrous cake, sorption, desorption. |
References |
1 Kenzhaliyev B. K., Surkova T. Ju., Julusov S. B., Pirmatov Je. A., Dulenin A. P. Poluchenie koncentrata redko zemel'nyh elementov is othodov I promprodukto vuranovoj promyshlennosti (Receiving concentrate of rare earth elements from waste and middlings of uranium industry) Kompleksnoe ispol'zovanie mineral'nogo syr'ja = Complex use of mineral resources, 2017.№1. S.70-77. www.kims-imio.kz (in Rus) 2 Surkova T. Ju., Julusov S. B., Barmenshinova M. B. Povedenie primesej pri izvlecheni iredko zemel'nyh elementov is uranovyh rud (behaviour of impurities in the extraction of rare earth elements from uranium ores) Vestnik KazNTU, №5,2010. S.42-45 (In Russ) 3 Surkova T. Ju., Julusov S. B., Barmenshinova M. B. Issledovanie povedenij redkozemel'nyh elementov v ionoobmennoj sisteme (Investigation of the behaviour of rare earth elements in the ion exchange system) Kompleksnoe ispol'zovanie mineral'nogo syr'ja = Complex use of mineral resources, №5, 2010.S.73-79. (In Russ) www.kims-imio.kz (In Rus) 4 Kokotov Ju. A., Pasechnik V. A. Ravnovesie I kinetika ionnogo obmena (Equilibrium and kinetics of ion exchange) M.: Himija=Chemistry, 1970. 330 s.(In Russ) 5 Lokshin Je. P., Ivanenko V. I., Tareeva O. A., Kornejkov R. I. Izvlechenie lantanoidov is fosfornokislyh rastvorov s ispol'zovaniem sorbcionnyh metodov (Extraction of lanthanides from phosphate solutions using sorption methods) Zh PH. 2009. T.82. vyp. 4. S.544-551. (In Russ) 6 Marinskij Ja. Ionnyj obmen (Ion exchange) M.: Mir, 1970. 565 s.(In Russ) 7 Gel'ferih F. Ionity. Osnovy ionnogo obmena (Ion exchange basics) M.: IL.,1962. 90 s. (In Russ) 8 Lokshin Je. P., Tareeva O. A., Elizarova I. R. Poluchenie koncentrata iz sul'fokationitov, nasyshhennyh redkozemel'nymi metallami iz serno kislyh rastvorov vyshhelachivanija fosfogipsa (Preparation of concentrate from sulfonic cation exchangers saturated with rare earth metals from sulphate solutions of phosphogypsum leaching) Himicheskaja tehnologija = Chemical Technology. 2014. №12. S.738-745. (In Russ) 9 Jagodin G. A., Sinegribova O. A., Chekmarev A. M. Tehnologija redkih metallov v atomnoj tehnike (Rare Metals Technology in Atomic Technology) M.: Atomizdat, 1974, 344 s. (In Russ) 10 Serebrennikov V. V. Himija redkozemel'nyh elementov (Chemistry of Rare Earth Elements) Tomsk: Izd. TTU, 1959-61. T. 1-2. (In Russ) 11 BochevskayaYe.G., AbishevaZ.S., KarshiginaZ.B., SargelovaE.A., KvyatkovskayaM.N., AkchulakovaS.T. Effect of the Temperature Conditions of Sulfation Process on Extraction of Rare-Earth Metals from Refractory Ore // Metallurgist. – 2018. –V. 62, -№ 5. – P. 574-586. http://dx.doi.org/10.1007/s11015-018-0695-x 12 Karshigina Z.B., Abisheva Z.S., BochevskayaYe.G., Ata Akcil., Sargelova E.A., Sukurov B.M., Silachyov I. Recovery of rare earth metals (REMs) from primary raw material: sulphatization-leaching-precipitation-extraction // Mineral processing and extractive metal. – 2018. V. 39, - № 5. – P. 319-338 http://dx.doi.org/10.1080/08827508.2018.1434778 |
Title |
LEACHING OF GOLD-CONTAINING ORES WITH APPLICATION OF OXIDATION ACTIVATORS |
Аuthors |
Abubakriev A.T., KoizhanovaA.K., Magomedov D.R., ErdenovaM.B., Abdyldaev N.N. (Almaty, Kazakhstan) |
Author´s information |
Satbayev University, Institute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan Abubakriev A.T. - Senior Engineer, Special Hydrometallurgy Methods Laboratory named after Beisembaev B.B.ofInstitute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan, https://orcid.org/0000-0002-5635-4700, asimjan-1986@mail.ru Коizhanova А. К. – PhD in Technical Sciences, Chief Researcher, Head of Special Hydrometallurgy Methods Laboratory named after Beisembaev B.B.ofInstitute of Metallurgy and Ore Beneficiation JSC, Almaty, https://orcid.org/0000-0001-9358-3193, E-mail: aigul_koizhan@mail.ru Маgomedov D. R. – Senior Engineer, Special Hydrometallurgy Methods Laboratory named after Beisembaev B.B.ofInstitute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan, https://orcid.org/0000-0001-7216-2349, E-mail: davidmag16@mail.ru Еrdenova М. B. – Junior Research Associateof Special Hydrometallurgy Methods Laboratory named after Beisembaev B.B.ofInstitute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan, https://orcid.org/0000-0002-7496-5097, E-mail: erdenova_mariya@mail.ru Abdyldaev N.N. – Engineer, Special Hydrometallurgy Methods Laboratory named after Beisembaev B.B.of Institute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan, https://orcid.org/0000-0001-8145-5741 |
Abstract |
The Article presents the results of studies conducted to process gold-bearing rocks from one of the fields in Kazakhstan. We studied the phase chemical and mineral composition of the ore using semi-quantitative X-ray fluorescent, chemical (assay), electron raster and rational (phase) analyzes. Wefound that the test sample contained 1.4 g/t Au and 0.14 g/t Ag. The granulometric analysis showed that the main gold (36.51%) was concentrated in a class of -2.5 +1.25 mmsize, with 1.42 g/t gold content. The main components of the initial sample composition were quartz 38.9%, albite 20.3%, pyrite 5.8%. we studied thegravity recovery possibility of gold-bearing ore using laboratory equipment, i.e. Knelson KS-MD 3 centrifugal concentrator. We obtained a gold-containing concentrate with 6.04 g/t gold content on a centrifugal concentrator with extraction of 52.65%, and 0,82 g/t gold in gravity tailingsunder the one-stage recovery flow sheet. We determined the optimal leaching parameters for the recovery products (gravity concentrate and gravity tailings) using various oxidation activators. The gold recovery degree was 77.3%with direct gravity concentrate cyanidation, and 85.7%with preliminary oxidation using calcium hypochlorite increasing the gold recoverydegree by 8.4%, when leaching the gravity tailingsusing calcium hypochlorite -73.1%, sodium peroxide - 75.6%, Ascor oxidation activator (AS-45102) - 71.9%. |
Keywords |
gold-bearing rock, leaching, gravity concentrate, gravity tailings, recovery, oxidation activator. |
References |
1 Algebraistova N.K., Alekseyeva E.A., Kolyago E.K. Mineralogiya i tekhnologiya obogashcheniya lezhalykh khvostov Artemovskoy ZIF (Mineralogy and technology of recovery of old tailings of Artyomovsk GRF) // Doklad na simp. «Nedelya gornyaka» («Miner's week»). Mosсow, 2000. 41 - 48. (in Russ.). 2 Meretukov M. A., Turin K. K. Povedeniye zolota v khvostovykh otvalakh (Gold's behavior in tailings) // Tsvetnyye metally = Non-ferrous metals. 2011. 7. 27- 31.(in Russ.). 3 Erdenova M. B., Koyzhanova A. K., Kamalov E. M., Abdyldayev N. N., Abubakriyev A.T. Doizvlecheniye zolota iz otkhodov pererabotki zolotosoderzhashchikh rud kazakhstana (Additional recovery of gold from waste after processing of gold-containing ores of Kazakhstan.)// Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ. (Complex Use of Mineral Resources) 2018. 305 (2), 12–20. https://doi.org/10.31643/2018/6445.2 (In Rus) 4 Koyzhanova A. K., Arystanova G. A., Sedelnikova G. V., Esimova D. M. Issledovaniye biogidrometallurgicheskoy tekhnologii izvlecheniya zolota iz khvostov sorbtsii zolotoizvlekatelnoy fabriki (Investigation of biohydrometallurgical technology of extracting gold from the sorption tailings of a gold recovery plant) // Tsvetnyye metally = Non-ferrous metals. 2016. 9. 52-56.https://doi: /10.17580/tsm.2016.09.07 (In Rus) 5 Mikhaylova A. N., Mineyev G.G., Gudkov S. S. Ukrupnenno-laboratornyye ispytaniya protsessa biokhimicheskogo okisleniya sulfidnoy zolotosoderzhashchey rudy v usloviyakh kuchnogo vyshchelachivaniya (Integratedlaboratory tests of sulfide gold ore biochemical oxidation under heap leaching)//Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta =Bulletin of the Irkutsk State Technical University. 2012. 6. 116. (in Russ.). 6 Arifulov Ch. Kh., Arsentyeva I. V., Ozherelyeva A.V. Zolotorudnyye mestorozhdeniya v riftogennykh chernoslantsevykh otlozheniyakh Yuzhnogo Urala (Gold deposits in rift black-shale sediments of the Southern Urals). Moscow: CRGRINNM. 2013. 105. (in Russ.). 7 In-Situ Leaching (ICL) /Innovations in Gold and Silver Recovery. Phase IV.-USA: Randol Int. Ltd. 1992. 3. 1329-1336. (in Eng). 8 Nitsenko A. V., Burabayeva N. M., Trebukhov S. A., Bolatbekov B. B. Izucheniye protsessa vozgonki myshiaka iz sinteticheskogo sulfoarsenida medi pri ponizhennom davlenii (Study of the process of arsenic sublimation from synthetic copper sulphoarsenide (CuAsS) under reduced pressure)// Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ. 2018. 1. 44-50. www.kims-imio.kz (In Rus) 9 Algebraistova N. K., Samorodskiy P. N., Kolotushkin D. M., Prokopyev I. V. Tekhnologiya izvlecheniya zolota iz tekhnogennogo zolotosoderzhashchego Syria (Technology of gold recovery from gold-bearing technogenic raw material) // Obogashcheniye rud = Ore benefication. 2018. 1. 31–35. https://doi: /10.17580/or.2018.01.06 10 Bocharov V. A., Ignatkina V. A., Abryutin D. V. Tekhnologiya pererabotki zolotosoderzhashchego Syria (Technology of processing gold-bearing rocks.) Moscow: Pub. house MISaA. 2011. 326 . (in Russ.). 11 Kenzhaliyev B.K., Berkinbayeva A.N., Dosymbayeva Z.D., SharipovR.Kh. Extraction Of Non-Ferrous And Noble Metals From Mill Tailing By Solutions In The Presence Of Oxidizing Agents. International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-4, Issue-8, August 2017. P. 93. (In Eng) 12 12 Kenzhaliyev B. K., Koyzhanova A. K., Abdykirova G. ZH., Kamalov E. M., Magomedov D. R. Vyshchelachivaniye zolotosoderzhashchego syr'ya s ispol'zovaniyem okislitelya (Gold leaching-bearing raw materials using an oxidizing agent) Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Effektivnyye tekhnologii proizvodstva tsvetnykh, redkikh i blagorodnykh metallov» («Efficient production technology of non-ferrous, rare and precious metals »)Almaty. 2018. 187. https://doi.org/10.31643/2018-7.14 (In Rus) 13 Erdenova, M., Kenzhaliyev, B., Koizhanova, A., Temirova, S., Abdyldaev, N. Gold recovery from man-made mineral raw materials by methods of flotation recovery and cyaning. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM Volume 18, Issue 1.4, 18th International Multidisciplinary Scientific Geoconference, SGEM 2018; Albena; Bulgaria; 2 July 2018 до 8 July 2018 2018, P. 67-74. (In Eng) 14 Zaizheng Dong,Yimin Zhu, Yuexin Han, Xiaotian GuKaiJiang. Study of pyrite oxidation with chlorine dioxide under mild conditions. //Minerals Engineering. – 2019. – P. 106-114. https://doi:10.1016/j.mineng.2019.01.018 (In Eng) |
Title |
PHYSICAL AND CHEMICAL RESEARCHES OF NICKEL-COBALT CONCENTRATES MADE FROM WASTES OF HEAT-RESISTANT NICKEL ALLOYS |
Аuthors |
Kilibayeva S. K., Agapova L.Ya., Kvyatkovskaya M.N., Amanzholova L.U., Kushch Y.P. (Almaty, Kazakhstan) |
Author´s information |
Satbayev University, Institute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan Kilibayeva Salikha Kazbagambetovna - Candidate of Eng., Senior Researcher of the Laboratory of Rare Scattered Elements, Institute of Metallurgy and Ore Benefication JSC (IMOB JSC), Almaty, Kazakhstan, https://orcid.org/0000-0002-4188-3642, k_salikha@mail.ru Agapova Ludmila Yakovlevna – Doc.of Eng., Associate Professor, Chief Scientific Officer of the Laboratory of Rare Scattered Elements, Institute of Metallurgy and Ore Benefication JSC (IMOB JSC) Almaty, Kazakhstan, https://orcid.org/0000-0001-9180-7296, E-mail: rm.303.imo@mail.ru Kvyatkovskaya Marina Nikolaevna – Researcher of the Laboratory of Physical Metods of Analysis, Institute of Metallurgy and Ore Benefication JSC (IMOB JSC), Almaty, Kazakhstan,https://orcid.org/0000-0002-3686-6370, E-mail: kmn_55@mail.ru Amanzholova Leila Uralovna – Candidate of Eng., Senior Researcher of the Laboratory of Physical Metods of Analysis, Institute of Metallurgy and Ore Benefication JSC (IMOB JSC), Almaty, Kazakhstan, https://orcid.org/0000-0002-9582-3522, E-mail: alu-lia@mail.ru Kuchsh Helena Petrovna – Engineer of the Laboratory of Physical Metods of Analysis, Institute of Metallurgy and Ore Benefication JSC (IMOB JSC), Almaty, Kazakhstan, helena.kuchsh@gmail.com |
Abstract |
The wastes of rhenium-containing heat-resistant nickel alloys (HRNA) contain 50-75% of Ni, 3-15% of Co. While electrochemical processing of the wastes of the HRNA up to 80-90% of Re, Ni and Co passes into the solutions, and a small part of them remains in the anode slurry. The remaining part of the metals from the slurry is chemically dissolved into the solution. After electrochemical treatment of wastes and chemical dissolution of slurry the solutions are combined and Re is extracted from them. The Ni – Co concentrate was precipitated (until a pH of 8–9 was established, at a temperature of 40 °C, by intensive stirring for 1 h) from the raffinate (g/dm3: 14.26 Ni; 2.48 Co) after the extraction of Re by NaOH (500 g/dm3) solution. Physical and chemical studies of the concentrate using X-ray fluorescent, X-ray phase, thermo gravimetric and X-ray methods showed that it contains the following phases, wt. %: 62.6 Na2SO4; 37.4 Ni2 (NO3)2 (OH)2 • 2H2O and Co (OH)2. Washing the concentrate from sodium by water at L:S = 10: 1 ratio allowed reducing its mass (~ 2.4 times), reducing the content of sodium, increasing the content of Ni (from 15.68 to 37.55 %) and Co (from 1.89 to 4.48%). When the concentrate is annealed in the temperature range of 300-400 °C, the processes of dehydration of the hydroxides of Ni and Co and their transition to the oxide forms occur. The resulting concentrate can be sent for further processing in order to extract non-ferrous metals from it or used to produce some ferroalloys. |
Keywords |
wastes of HRNA, raffinate, Ni-Co concentrate, precipitation, washing, annealing. |
References |
1 Ospennikova O.G. Strategiya razvitiya zharoprochnykh splavov i staley spetsialnogo naznacheniya. zashchitnykh i teplozashchitnykh pokrytiy (The development strategy of heat-resistant alloys and steels for special purposes, protective and heat-protective coatings). M.: VIAM. 2012, 19-35. (in Russ.). 2 2302473 RU. Sposob pererabotki otkhodov zharoprochnykh splavov (The method of processing waste heat resistant alloys). / Ranich N.S., Pichushkin O.A., Zolotilin V.A., Ineshin G.M. Opubl. 10.07.2007, 19. – Elektronnaya versiya na sayte: http://bd.patent.su/2302000-2302999/pat/servl/servlet7ec5.html (in Russ.). 3 Istrashkina M.V.. Peredereyeva Z.A.. Fomin S.S. Perspektivnyye tekhnologii izvlecheniya reniya iz otkhodov nikelevykh splavov (Promising technologies for the extraction of rhenium from waste nickel alloys). M.: TsINAO. 2001. 111-119. (in Russ.). 4 2061079 RU. Sposob izvlecheniya oksida reniya iz otkhodov (The method of extraction of rhenium oxide from waste). / Gel R.P., Drobotenko G.A., Kolosov V.N., Nekhoroshev N.E. Opubl. 27.05.1996. – Elektronnaya versiya na sayte: http://www.freepatent.ru/patents/2061079 (in Russ.). 5 Kasikov A.G., Petrova A.M., Bagrova E.G. Izvlecheniye reniya iz shlifotkhodov zharoprochnykh splavov s primeneniyem zhidkostnoy ekstraktsii. (Extraction of rhenium from shlifotothod superalloys using liquid extraction). Tsvetnaya metallurgiya= Non-ferrous metallurgy. 2009. 1, 15-19 (in Russ.). 6 2437836 RU. Sposob izvlecheniya i ochistki reniya iz rastvorov ot pererabotki zharoprochnykh splavov (The method of extraction and purification of rhenium from solutions from the processing of superalloys). / Shipachev V.A. Opubl. 27.12.2011. 36. 7 Palant A.A., Bryukvin V.A., Levin A.M., Levchuk O.M. Kompleksnaya elektrokhimicheskaya tekhnologiya pererabotki otkhodov zharoprochnykh nikelevykh splavov. soderzhashchikh reniy. volfram. tantal. niobiy i drugiye tsennyye metally (Integrated electrochemical technology for the processing of waste heat-resistant nickel alloys containing rhenium, tungsten, tantalum, niobium and other valuable metals). Metally= Metals. 2014. 1, 25-27 (in Russ.). 8 Palant A.A., Bryukvin V.A., Levchuk O.M. Kompleksnaya elektrokhimicheskaya pererabotka metallicheskikh otkhodov reniysoderzhashchego zharoprochnogo nikelevogo splava v sernokislykh elektrolitakh ( Complex electrochemical processing of metal waste from rhenium-containing heat-resistant nickel alloy in sulphate electrolytes). Elektrometallurgiya= Electrometallurgy. 2010. 7, 29-33. (in Russ.). 9 Palant A.A., Levchuk O.M., Bryukvin V.A. Kompleksnaya elektrokhimicheskaya tekhnologiya pererabotki otkhodov zharoprochnykh nikelevykh splavov. soderzhashchikh reniy (Comprehensive electrochemical technology for processing waste heat-resistant nickel alloys containing rhenium). Tsvetnaya metallurgiya=Non-ferrous metallurgy. 2007. 11, 11-12. (in Russ.). 10 2401312. RU. Sposob elektrokhimicheskoy pererabotki metallicheskikh otkhodov zharoprochnykh nikelevykh splavov. soderzhashchikh reniy (The method of electrochemical processing of metal waste heat-resistant nickel alloys containing rhenium). / Palant A.A., Bryukvin V.A., Levchuk O.M., Palant A.V., Levin A.M. Opubl. 10.10.2010. (in Russ.). 11 2313589 RU Sposob vydeleniya tsennykh metallov iz supersplavov (The method of extraction of valuable metals from superalloys). / Shtoller V., Olbrikh A., Meyeze-Marktsheffel Yu., Mati V., Erb M., Nitfeld G., Gille G. (DE - Germaniya). Opubl. 10.08.2004. (in Russ.). 12 Agapova L.Ya., Abisheva Z.S., Kilibayeva S.K., Yakhiyayeva Zh.E. Elektrokhimicheskaya pererabotka tekhnogennykh otkhodov reniysoderzhashchikh zharoprochnykh nikelevykh splavov v sernokislykh rastvorakh (Electrochemical processing of man-made wastes of rhenium-containing heat-resistant nickel alloys in sulfuric acid solutions). Tsvetnyye metally = Non-ferrous metals. 2017. 10, 69-74. http://dx.doi.org/10.17580/tsm.2017.10.08 (in Russ.). 13 Sharipova A.S., Zagorodnyaya A.N., Abisheva Z.S., Sadykanova S.E. Izvlecheniye reniya iz ammiachnykh tekhnogennykh rastvorov ekstraktsionnoy tekhnologii reniya (Extraction of rhenium from ammonium technogenic solutions of extraction technology of rhenium). Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a = Coplex Use of Mineral Resources. 2013. 3, 30 - 38. http://kims-imio.kz (in Russ.). 14 33395 RK. Sposob elektrokhimicheskoy pererabotki metallicheskikh otkhodov reniysoderzhashchikh zharoprochnykh nikelevykh supersplavov (The method of electrochemical processing of metal waste rhenium-containing high-temperature nickel superalloys). /Agapova L.Ya., Abisheva Z.S., Kenzhaliyev B.K., Kilibayeva S.K., Yakhiyayeva Zh.E., Altenova A.N. Opubl. 18.01.2019. Promyshlennaya sobstvennost RK №3. 2019 g. (in Russ.). 15 Kilibayeva S.K., Agapova L.Ya., Kenzhaliyev B.K., Ruzakhunova G.S., Bayduisenova A.E. Pererabotka shlamov. poluchennykh v protsesse anodnogo rastvoreniya otkhodov zharoprochnykh nikelevykh splavov (Processing of sludge obtained in the process of anodic dissolution of waste heat-resistant nickel alloys). Effektivnyye tekhnologii proizvodstva tsvetnykh. redkikh i blagorodnykh metallov: мater. мezhdunar. nauch.-prakt. konf. (Effective production technologies of non-ferrous, rare and precious metals: mater. international scientific-practical conf.) Almaty, 2018. 280-285. https://doi.org/10.31643/2018-7.23 (in Russ.). 16 Agapova L.Ya., Kilibayeva S.K., Zagorodnyaya A.N., Sharipova A.S., Kenzhaliyev B.K., Yakhiyayeva Zh.E. Recycling of rhenium, nickel and cobalt from the waste of heat-resistant alloys // XIII International Mineral processing and Recycling Conference. Belgrade, Serbia, 2019. 445-451. 17 Greyver T.N., Kalashnikova M.I., Ertseva L.N., Lutova L.S., Vagner L.Ya. Osazhdeniye sulfidov nikelya i kobalta iz sulfatnykh rastvorov seroy v prisutstvii vosstanovitelya (Deposition of nickel and cobalt sulphides from sulphate solutions with sulfur in the presence of a reducing agent). Tsvetnyye metally= Non-ferrous metals. 2010. 9, 21-27. (in Russ.). 18 2182187 RU. Sposob polucheniya nikelya i kobalta (The method of producing nickel and cobalt). / Baskov D.B.; Plekhanov S.V.; Orlov S.L.; Sereda G.A. Оpubl. 10.05. 2002. (in Russ.). 19 Nakamoto K. Infrakrasnyye spektry neorganicheskikh i koordinatsionnykh soyedineniy (Infrared spectra of inorganic and coordination compounds). M.: Mir. 1966. 412 s.. il. (in Russ.).> 20 Farmer V.C. The Infrared Spectra of minerals. MINERALOGICAL SOCIETY, 41 QUEEN’S GATE. London, 1974, 539 p. 21 Kazitsyna L.A.. Kupletskaya N.B. Primeneniye UF-. IK- i YaMR- spektroskopii v organicheskoy khimii (The use of UV, IR and NMR spectroscopy in organic chemistry.). Moskva. Vysshaya shkola. 1971. 264. (in Russ.). 22 HR Minerals(600 spectra). Thermo Fisher Scientific Inc. for Nicolet FT-IR. 2008. 23HR Aldrich FT-IR Collection Edition II (18454 spectra) Thermo Fisher Scientific Inc. for Nicolet FT-IR. 2008. 24 Aldrich Organometallic, Inorganic, Boron, Deuterium Compounds (632 spectra). Nicolet Instrument Corp. – 1995. 25 Solntseva L.S., Sidorenko G.A., Solntsev B.P. Primeneniye IK-spektroskopii k izucheniyu kharaktera svyazi i koordinatsii kationov po kislorodu i galogenam v mineralakh (Application of IR spectroscopy to the study of the nature of the bond and coordination of cations in oxygen and halogens in minerals). Konstitutsiya i svoystva mineralov= Constitution and properties of minerals. 1972. 6, 30-46. (in Russ.). 26 Chalyy V.P. Gidrookisi metallov (Metal hydroxides). Kiyev. Naukova dumka. 1972. 154 s. (in Russ.). |
Title | DIRECT REDUCTION OF SELENITE-IONSFROM A HYDROCHLORIC ACID SOLUTION OF COPPER (II) CHLORIDE WITHSELENIUM POWDER FORMATIONON |
Authors | Bayeshov А.B., Makhanbetov А.B. |
Author´s information |
Bayeshov Abduali Bayeshuly — Academician of the Academy of Science of the Republic of Kazakhstan, Doctor of chemical science, Professor. “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty, the Republic of Kazakhstan. ORCID ID: https://orcid.org/0000-0002-2403-8949, E-mail: abayeshov@mail.ru Makhanbetov Arman Berkinbayuly — Ph.D., Senior Researcher. “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty, the Republic of Kazakhstan. ORCID ID: https://orcid.org/0000-0002-1620-6922 E-mail: armanmab@mail.ru |
Abstract | Research article presents an electrochemical method for obtaining selenium powder from compounds of 4-valent selenium in the presence of copper (II) ions. The electrolysis was carried out in an electrolytic cell with an unseparated interelectrode space in a hydrochloric acid solution containing copper chloride, where a copper electrode was used as the anode and a titanium electrode as the cathode.Cu (I) –Cu (II) redox pair potential difference was used as a reducing agent. Ultrafine selenium powder formation as a result of the chemical reduction of selenium (IV) ions by copper (I) ions obtained by anodic dissolution, as well as by the interaction of copper (II) ions with an anode was shown. Results of our study were presented, showing the influence of electrolysis conditions, current density, temperature of medium, acid concentration and copper (II) ion concentration during electrolysis on selenium formation current output, shape and size of the resulting powder. Study results demonstrate selenium powder formation with a very high current efficiency./td> |
Keywords | selenium, powder, copper, electrolysis, cathode, anode, micrograph. |
References |
1 Bayeshov A., ZhurinovM.Zh., Zhdanov S.I. Elektrohimiyaselena, telluraipoloniya (Electrochemistry of selenium, tellurium and polonium).NaukaKazSSR = Science KazSSR. 1989. 172 (in Russ.) 2 Naumov A.V. Selen i tellur: sostoyaniyerynkov, krizis i yegoposledstviya (Selenium and tellurium: the state of the markets, the crisis and its consequences)// Metallurg. (Metallurgy) 2010. 4. 19-21 (in Russ.). 3 Kenzhaliyev B.K., Trebukhov S.A., Volodin V.N., Trebukhov A.A., Tuleutai F.Kh. Izvlecheniye selena iz promproduktov metallurgicheskogo proizvodstva (Selenium extraction out of metallurgical production middlings) // Kompleksnoe ispol’zovanie mineral’nogo Syr’a = Сomplex use of mineral resources. 2018. 4. 56-64. (in Russ). https://doi.org/10.31643/2018/6445.30 4 Yasin K., Guldem K.,Servet T. An investigation of copper and selenium recovery from copper anode slimes // International Journal of Mineral Processing. – 2013. – V. 124. – P. 75-82. https://doi.org/10.1016/j.minpro.2013.04.006 5 Patent RF 2224711 Dolgov S.G., Komov I.A., Sanzhanov A.I. Sposob polucheniya selena (The method of obtaining selenium). Opubl. 27.02.2004 (in Russ.). 6 Bayeshov A., Ivanov N., Myrzabekov B. Electrochemical behavior of Selenium as part of Composite Electrode in Sulfuric Acid Medium // Journal of Advances in Chemistry. 2011. V. 7. N3.P. 1378-1385. https://doi.org/10.24297/jac.v7i3.2373 7 Bayeshov A., Baeshova A.K., Kozhakov B.E., Buketov E.A. Sposob polucheniya metallicheskogo selena (The method of obtaining metallic selenium). A.s. SSSR № 1072491. 1982. (not subject to publication in open press) (in Russ.). 8 Bayeshov A., Kozhakov B.E., Buketov E.A Katodnoe povedenie «trudnovosstanavlivayushchihsya» arsenat- i selenat-ionov v kislyh rastvorah (Cathodic behavior of "hardly-recovering" arsenate and selenate ions in acidic solutions). V kn. Prakticheskij vklad NTO v reshenie voprosov himii i metallurgii. Karaganda. 1984. 59 (in Russ.). 9 Bayeshov A., Kozhakov B.E., Bejbitova A.D., Bayeshova A.K. Elektrohimicheskoe vosstanovlenie «trudnovosstanavlivayushchihsya» anionov (Electrochemical reduction of "hardly-recovering" anions). 37th Meeting ISE. Vilnius, USSR. 1986. 28-30 (in Russ.). 10 Bayeshov A. O mekhanizme elektrohimicheskogo vosstanovleniya kislorodsoderzhashchih trudnovosstanavlivaemyh anionov v kislyh rastvorah (On the mechanism of V kn.: electrochemical reduction of oxygen-containing difficult-to-recover anions in acidic solutions). Sbornik po himii = Chemistry compendium. A-Ata. II. 1988. 121-128 (Dlya sluzhebnogo pol'zovaniya) (in Russ.). 11 Suhotina A.M. Spravochnik po elektrohimii (Handbook of Electrochemistry).L.: Khimiya (Chemistry). 1981. 488 (in Russ.). 12 Astahova R.K., Krasikov B.S. K voprosu ob elektrohimicheskom povedenii medi v solyanokislyh rastvorah (To the question of the electrochemical behavior of copper in hydrochloric acid solutions). Zh.prikl.himii=Journal of applied chemistry. 1974. 44. 2. 363-371 (in Russ.). 13 Kostromin A.I., Badakshanov R.M. Primenenie mednogo elektroda v gal'vanostaticheskij kulonometrii(The use of copper electrode in galvanostaticcoulometry). Zhurn.analit.chem=Journal of analytical chemistry. 1974. 29. 9. 1782-1787 (in Russ.). 14 Chernaya S.S., Maceevskij B.P., Fioshin E.V. Potenciometricheskoe issledovanie kompleksoobrazovaniya ionov medi I i II hloridnyh vodnyh rastvorah (Potentiometric study of the complexation of copper ions I and II chloride aqueous solutions). Izv. AN Lat SSR = News. 1983. 3. 336-339 (in Russ.). |
Title | REVIEW OF EXPERIMENTAL AND THEORETICAL RESEARCH WORKS OF SMART WINDOWS |
Author | Aimaganbetov K. Р. |
Author´s information |
Aimaganbetov Kazybek Pirzhanuly — Master of technical sciences, Satbayev University, The Institute of Physics and Technology, Almaty, Kazakhstan. ORCID ID: https://orcid.org/0000-0001-6367-9135, E-mail: kazybek012@gmail.com |
Abstract | Smart windows play an important role in а energy saving and for thermal heat inside buildings. Smart windows allow you to reduce heat consumption and air conditioning and lighting costs. It is used as an alternative to blinds and curtains. Liquid crystal or electrochemical smart windows do not transmit ultraviolet light. The measured-value smartphone requires the use of special devices to block ultraviolet light. This article provides an overview of the theoretical and experimental research in the field of smart windows. A review of experimental studies performed using various methods of measurement in space and in laboratory studies. A review of theoretical research literature and theoretical research models was conducted to analyze the output characteristics and the optimal structure of smart windows. Conducted research have a great influence in the field of materials science and construction materials as a useful source of information. |
Keywords | smart windows, energy saving, experimental measurements, visual comfort. |
References |
1 Rosato A., Scorpio M., Sibilio S. Use of a scale model under artificial sky for daylighting design. // Heritage Architecture Landesign focus on Conservation Regeneration Innovation Le vie dei Mercanti XI Forum Internazionale di Studi, Aversa/Capri, Italy, - 2013. - P. 1245-1252 (in Eng.). 2 Ciampi G., Rosato A., Scorpio M., Sibilio S. Retrofitting solutions for energy saving in a historical building lighting system // Energy Procedia. 2015. – V. 78. – P. 2669–2674, https://doi.org/10.1016/j.egypro.2015.11.343 (in Eng.). 3 Sibilio S., Rosato A., Scorpio M., Daylighting design in a low energy building. // LUX EUROPA 2013 - 12th European Lighting Conference Lux Europa. Krakow, Poland. 2013. – P. 251-256 (in Eng.). 4 Bange K., Gambke T. // Advanced Materials. 1990. - V. 2. - P. 10-16. (in Eng.). 5 Granqvist G., Electrochromics for smart windows: Oxide-based thin films and devices // Thin Solid Films. 2014. - V. 564. - P. 1–38, https://doi.org/10.1016/j.tsf.2014.02.002 (in Eng.). 6 Lee E. S., Dibartolomeo D. L., Selkowitz S. E. Daylighting control performance of a thin-film ceramic electrochromic window: Field study results // Energy Build. 2006. - V. 38. P. 30–44, https://doi.org/10.1016/j.enbuild.2005.02.009 (in Eng.). 7 Papaefthimiou S., Leftheriotis G., Yianoulis P., Hyde T. J., Eames P. C., Fang Y., Pennarun P. Y., Jannasch P. Development of electrochromic evacuated advanced glazing // Energy and Buildings. 2006. - V. 38. - P. 1455 – 1467, https://doi.org/10.1016/j.enbuild.2006.03.029 (in Eng.). 8 Piccolo A., Pennisi A., Simone F. Daylighting performance of an electrochromic window in a small scale test-cell // Solar Energy. 2009. – V. 83. – P. 832–844, https://doi.org/10.1016/j.solener.2008.11.013 (in Eng.). 9 Dontsova A.E.. Kalinina A.V. Steklo s upravlyayemoy prozrachnostyu (smart window) v grazhdanskom stroitelstve // Alfabuild. 2018. 4 (6), 74-82 (in Russ.). 10 Lee E.S., Claybaugh E. S., LaFrance M. End user impacts of automated electrochromic windows in a pilot retrofit application // Energy and Buildings. 2012. -V. 47. – P. 267–284, https://doi.org/10.1016/j.enbuild.2011.12.003 (in Eng.). 11 Belousov A. L.. Patrusheva T. N.. Elektrokhromnyye oksidnyye materialy // Journal of Siberian Federal University. Engineering & Technologies 2. 2014 (7). 154-166 (in Russ.). 12 Kim S., Kong X., Taya M. Electrochromic windows based on anodic electrochromic polymesitylenes containing 9H-carbazole-9-ethanol moieties. // Solar Energy Materials and Solar Cells. 2013. – V. 117. – P. 183–188, https://doi.org/10.1016/j.solmat.2013.04.030 (in Eng.). 13 Piccolo A., Simone F. Performance requirements for electrochromic smart window. // Journal of Building Engineering. 2015. – V. 3. – P. 94–103, 103, https://doi.org/10.1016/j.jobe.2015.07.002 (in Eng.). 14 Gugliermetti F., Bisegna F. Visual and energy management of electrochromic windows in Mediterranean climate. // Building and Environment. 2003. – V. 38. – I. 3. – P. 479-492, https://doi.org/10.1016/S0360-1323(02)00124-5 (in Eng.). 15 DeForest N., Shehabi A., Garcia G., Greenblatt J., Masanet E., Lee E.S., Selkowitz S., Milliron D.J. Regional performance targets for transparent near-infrared switching electrochromic window glazings. //Building and Environment. 2013. – V. 61. – P. 160-168. (in Eng.). 16 Assimakopoulos M. N., Tsangrassoulis A., Guarracino G., Santamouris M. Integrated energetic approach for a controlable electrochromic device. // Energy and Buildings. 2004. – V. 36. – I. 5. – P. 415-422, https://doi.org/10.1016/j.enbuild.2004.01.040 (in Eng.). 17 Gugliermetti F., Bisegna F. A model study of light contrai systems operating with Electrochromic Windows. // Lighting Research & Technology. 2005. – V. 37. – N. 1. – P. 320, https://doi.org/10.1191/1365782805li123oa (in Eng.). 18 Piccolo A. Thermal performance of an electrochromic smart window tested in an environmental test cell. // Energy and Buildings. 2010. – V. 42. – I. 9. – P. 1409-1417, https://doi.org/10.1016/j.enbuild.2010.03.010 (in Eng.). 19 Aldawoud A. Conventional fixed shading devices in comparison to an electrochromic glazing system in hot, dry climate. // Energy and Buildings. 2013. – V. 59. – P. 104-110, https://doi.org/10.1016/j.enbuild.2012.12.031 (in Eng.). 20 Fernandes L. L., Lee E. S., Ward G. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort. // Energy and Buildings. 2013. – V. 61. – P. 8-20, https://doi.org/10.1016/j.enbuild.2012.10.057 (in Eng.). |
Title | X-RAY DIFFRACTION AND MÖSSBAUER STUDIES OF Fe-57 IMPLANTATION INTO THE METALLIC Ta AND Mo |
Author | Bedelbekova K. A. |
Author´s information |
Bedelbekova Kamshat Azatovna — Junior researcher, Institute of ,Nuclear Physic, Satbayev University, Almaty, Kazakhstan. ORCID ID: https://orcid.org/0000-0002-1526-7758, E-mail: kamshat1980@mail.ru |
Abstract | Development of nuclear and thermonuclear energy poses a number of problems for materials scientists related to the creation of structural materials. It should be noted that to date, the material of the fuel rod ducts, which would be able to realize the economical, long-term and safe operation of FNR in full scope, has not been developed. The study of the properties of structural materials for operating and future nuclear plants is still one of the most important scientific and technical challenges. The methods of X-ray diffraction and Mössbauer spectroscopy on 57Fe nucleus were used to study the effect of implanting 57Fe ions of 1 MeV energy and the fluence of 5*1016ion/cm2 on the radiation resistance properties of the structural materials of the nuclear industry of metallic Ta and Mo. Mössbauer studies were of two methods: 1) standard transmission geometry (MS) and 2) conversion electrons registration from the material surface (KEMC). Concentration of the implanted Fe atoms was calculated using STRIM software. Two phases formation was found at the result of implantation into Ta and Mo matrices. The main phase in molybdenum (84%) is a solid solution of Fe replacement into Mo. The main phase in tantalum (78%) corresponds to formation of Fe complexes in the matrix of Ta. The obtained results of the study could be used to solve the issues of NPPs safe operation and to improve the efficiency of their operation, enabling the resource characteristics of core materials to be correctly assessed and to predict their behavior at high damaging radiation doses. |
Keywords | implantation, conversion and absorption Mössbauer spectroscopy, X-ray diffraction, STRIM software, radiation damage. |
References |
1 Komarov F.F. Ionnaya implantatsiya v metally (Ionic implantation in metals ). Moscow. Metallurgy. 1990. 216. (in Russ.) 2. Ozernoy, A. N., Vereshchak, M. F., Manakova, I. A., Tleubergenov, Z. K., & Bedelbekova, K. A. Nuclear Gamma-Resonance Spectroscopy in Study of Nanoscale Composites. Physics of Atomic Nuclei, 2018. 81 (10), 1484 – 1487. https://doi.org/10.1134/s1063778818100125 (in Eng.) 3. Chaoliang Xu, Xiangbing Liu, Fei Xue, Yuanfei Li, Min Yu Characterization of magnetic properties in a 316 stainless steel after deformation and irradiation// Fusion Engineering and Design, vol. 133, August 2018, P. 125-129 (in Eng.) https://doi.org/10.1016/j.fusengdes.2018.05.080 4. Popov V.V.. Sergeyev A.V. Emissionnaya messbaerovskaya spektroskopiya granits zeren polikristallicheskogo molibdena (Issue messbaerovsky spectroscopy of borders of grains of polycrystalline molybdenum) FMM= FMM. 2015, 116, 4, 400 -407 https://doi.org/10.7868/s0015323015040130 (in Russ.) 5. Srikanth, S., & Petric, A. (1994). Optimization and calculation of the FeTa phase diagram. Journal of Alloys and Compounds, 203, 281–288. https://doi.org/10.1016/0925-8388(94)90747-1 (in Eng.) 6. A.F.Guillermet. Bull. Alloy Phase Diagrams 3. 359, 1982 (in Eng.). 7. V.S. Rusakov Messbauerovskaya spektroskopiya lokalno neodnorodnykh system (Messbauerovsky spectroscopy of locally non-uniform systems), Almaty: OPNI IYaF NYaTs Kazakhstan, 2000, 431 (in Russ.) 8. Program SRIM [Электрон. ресурс: http://www.srim.org/ (in Eng.) (Information retrieved on 10.06.2019) 9. Belozerskiy G.N. Messbauerovskaya spektroskopiya kak metod issledovaniya poverkhnosti (Messbauerovsky spectroscopy as surface research method), Moskva, 1990, 352 (in Russ.) 10. Liljequist D. Nucl. Instr. and Meth., 1979, 160, 321 (in Eng.). 11. Shpinel V.S. Rezonans gamma-luchey v kristallakh (Resonance of gamma-rays in crystals) Moskva: Nauka. 1969, 407 (in Russ.) 12. Johnson E.. Johansen A.. Sarholt-Kristensen L. et.al. // Nucl. Instrum. and Meth. Phys.Res., 1987, 19-20, 1, 171 (in Eng.) 13. Kislitsin S.B.. Vereshchak M.F.. Manakova I.A. i dr. Voprosy atomnoy nauki i tekhniki=Questions of atomic science and technology Ser. Fizika radiatsionnykh povrezhdeniy i radiatsionnoye materialovedeniye (ser. Physics of radiation damages and radiation materials science), 2013, 2, 17 (in Russ.) 14. V. N. Volodin, Yu. Zh. Tuleushev, A. V. Nitsenko, N. M. Burabayeva. Razmernyj effekt pri formirovanii splava niobiya s kadmiem ul'tradispersnymi chasticami pri nizkoj temperature =Dimentional effect in forming the niobium alloy with cadmium ultradispersed particles with low temperature. Kompleksnoe ispol'zovanie mineral'nogo syr'ya. 2018, №4, 98-104 (in Russ.) https://doi.org/10.31643/2018/6445.35 15 . Jiang A.. Tyson T.A.. Axe L.. et al., Thin Solid Films. 2005, 479, 166 (in Eng.) 16. Sumiyama K., Ezawa H., Nakamura Y.//J.Phys. Chem. Solids 1987, 48, 255 (in Eng.) 17. Balihin A.V. O sostoyanii i perspektivah razvitiya metodov pererabotki otrabotavshego yadernogo topliva. Obzor = On the state and prospects of development of methods of processing spent nuclear fuel. Review. Kompleksnoe ispol'zovanie mineral'nogo syr'ya. 2018, 1, 71-87 (in Russ.) www.kims-imio.kz |
Title |
STUDY OF HYDROGEN PERMEABILITY OF MEMBRANES COATED WITH VARIOUS METAL FILMS (REVIEW) |
Authors |
Karboz Zh. A., Dossayeva S. K. (Almaty, Kazakhstan) |
Author´s information |
Karboz Zhanar Adilbekkyzy - Master of Engineering, Satbayev University, Institute of Metallurgy and Ore beneficiation, Almaty, Kazakhstan, E- mail: k.zhanar.a@mail.ru ORCID ID: 0000-0003-2538-8585 Dossayeva Sazhida Kalmuchambetkyzy- Head of the Department of Science, National academy of sciences of the Republic of Kazakhstan. E-mail: s.dosaeva@mail.ru ORCID ID 0000-0002-6011-5198
|
Abstract |
Recently, the search for an effective method for producing ultrapure hydrogen has been one of the most urgent tasks, which allows us to solve industrial problems where the use of hydrogen with a purity of more than 99.9999% is critical. Hydrogen makes up 10% of the mass of living systems on our planet, but the main source of its production is carbon raw materials, in particular natural gas, from which ≥90% of the world's hydrogen is produced. One of the most promising methods for the evolution of hydrogen from gas mixtures resulting from steam reforming is single-stage membrane separation to produce ultrapure hydrogen. The development of a membrane for separating hydrogen from gas mixtures is one of the most important tasks of hydrogen energy. We know that the hydrogen molecule is diatomic - H2. Under normal conditions, it is a gas without color, odor or taste. Hydrogen is readily soluble in many metals (Ni, Pt, Pd, etc.), especially in palladium (850 volumes of H2 per 1 volume of Pd). The solubility of hydrogen in metals is associated with its ability to diffuse through them. |
Keywords |
hydrogen, carbon raw materials, membrane, steam conversion, solubility. |
References |
1 Burkhanov G. S., Gorina N. B., Korenovskiy N. L., Roshan N. R., Chistov E. M. Effektivnyye membrany iz splavov palladiya dlya izvlecheniya vysokochistogo vodoroda iz vodorod – soderzhashchikh gazovykh smesey // Sbornik IMET RAN. Moskva. 2013. 413-417 (in Russ.) 2 Lukomskiy Yu. Ya., Fiziko-khimicheskiye osnovy elektrokhimii. – Gamburg: dom Intellekt. 2008. 424 (in Russ.) 3 Korovin N. V. Toplivnyye elementy i elektrokhimicheskiye energoustanovki. Moskva: MEI. 2005. 280 (in Russ.) 4 Lavrenko V. A. Katodnoye vydeleniye vodoroda na disilitsidakh titana. volframa i molibdena i sootvetstvuyushchikh metallakh. Ukraina: Dopovidi Natsionalnoi akademii nauk Ukraini. 2007. 98-103 (in Russ.) 5 Gavrilova N. V. Perspektivy ispolzovaniya vodoroda v energetike // Elektrotekhnicheskiye kompleksy i sistemy upravleniya. 2008. 1. 60-65 (in Russ.) 6 Petukhov I. V. Vliyaniye kontsentratsii komponentov rastvora khimicheskogo nikelirovaniya na topografiyu i mikrorelyef Ni-P pokrytiy // Elektrokhimiya. 2008. 44. 2. 161-172 (in Russ.) 7 Sherman R., Birnbaum H. K. // Met. Trans. A. 1983. 14A. 203–209 (in Eng.) 8 Livshits A. I., Notkin M. E., Samartsev A. A. // J. Nucl. Mater. 1990. 170. 74–94 (in Eng.) 9 Livshits A., Sube F., Notkin M., Soloviev M., Bacal M. // J. Appl. Phys. 1998. 84. 2558–2564 (in Eng.) 10 Busnyuk A., Nakamura Y., Nakahara Y. et al. // J. Nucl.Mater. 2001. 290–293. 57–60 (in Eng.) 11 Hatano Y., Watanabe K., Livshits A. et al. // J. Chem. Phys. 2007. 127. 204 (in Eng.) 12 Fromm E., Gebhardt E. // Gase und Kohlenstoff in Metallen. 1976. 747 (in Eng.) 13 Busnyuk A. O., Notkin M. E., Grigoriadi I. P., Alimov V. N., Livshits A. I. Termicheskaya degradatsiya palladiyevogo pokrytiya vodorodopronitsayemykh membran iz niobiya // Zhurnal tekhnicheskoy fiziki. 2010. 80. 1 (in Russ.) 14 Burkhanov G. S.. Gorina N. B.. Kolchugina N. B.. Roshan N. R. // Ros. khim. zhurn. 2006. 4. 36 (in Russ.) 15 Knapton A.G. // Platinum Metals Rev. 1977. 21. 2. 44 (in Eng.) 16 Shu J., Adnot A., Grandjean B. P. A., Kaliaguine S. // Thin Solid Films. 1996. 286.1–2. 72 (in Eng.) 17 Ali Jawad K., Newson E. J., Rippin D. W. T. // J. Membrane Sci. 1994. 89. 1–2. 171 (in Eng.) 18 Paglieri S. N., Way J. D. // Separation & Purification. Rev. 2002. 31. 1. 1 (in Eng.) 19 Panichkin A. V., Mamayeva A. A., Kenzhegulov A. K., Imbarova A. T. Vodorodopronitsayemost membran iz niobiya i tantala. pokrytykh sloyem volframa razlichnoy tolshchiny // Effektivnyye tekhnologii proizvodstva tsvetnykh. redkikh i blagorodnykh metallov. Almaty. 2018. 440. https://doi.org/10.31643/2018-7.38 (in Russ.) 20 Chistova T. V. Issledovaniye vodorodopronitsayemosti membran iz splava Pd – 40mass. % Cu. // Fiziko- khimiya i tekhnologiya neorganicheskikh materialov. Moskva. 2017. 77-78 (in Russ.) 21 Zhua K., Lia X., Zhua Zh., Chena R., Sua Ya., Guoa J., Rettenmayrb M., Liub D. Analysis of W/Mo alloying on hydrogen permeation performance of dual phase Nb-Ti-Ni alloys based on hydrogen chemical potentials. // Journal of Membrane Science. 2019. 584. 290–299. https://doi.org/10.1016/j.memsci.2019.05.004 (in Eng.) 22 Panichkin A. V., Mamayeva A. A., Derbisalin A. M., Kenzhegulov A. K., Imbarova A. T. Vliyaniye sostava nanosimykh na poverkhnost plenok tverdykh rastvorov na kharakteristiki vodorodopronitsayemykh membran iz niobiya i tantala. // Kompleksnoye ispolzovaniye mineralnogo syria. 2018. 4. 130-139. https://doi.org/10.31643/2018/6445.39 (in Russ.) 23 Panichkin A. V., Derbisalin A. M., Mamayeva A. A., Dzhumabekov D. M., Imbarova A. T . Razrabotka metoda polucheniya gradiyentnykh po sostavu sloyev na poverkhnosti vodorodopronitsayemykh membran na osnove niobiya i tantala. // Kompleksnoye ispolzovaniye mineralnogo syria. 2016. 2. 69-75. https://doi.org/10.31643/2018/166445 (in Russ.) 24 Suzuki A., Yukawa H., Nambub T., Matsumotoc Y., Murataa Y. Analysis of pressure–composition–isotherms for design of non-Pd-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement. // Journal of Membrane Science. 2016. 503. 110–115 http://dx.doi.org/10.1016/j.memsci.2015.12.030 (in Eng.) 25 Awakuraa Y., Nambub T., Matsumotoc Y., Yukawaa H. Hydrogen solubility and permeability of Nb–W–Mo alloy membrane. // Journal of Alloys and Compounds. 2011. 509. S877– S880 https://doi.org/10.1016/j.jallcom.2010.10.133 (in Eng.) |
Title |
SILVER, GOLD AND PALLADIUM LEACHING FROM PRE-PREPARED ELECTRONIC SCRAP USING BROMINE-BROMIDE SOLUTION |
Authors |
Kogan V.S., Berkovich I.V. (Petah Tikva, Israel) |
Author´s information |
Kogan Vladimir Samuilovich - Ph.D. in Chemistry, Head of the Research Department of All Recycling Ltd, Petah Tikva, Israel, ORCID ID: 0000-0002-8080-0512, E-mail: vladimir@atrecycling.com Berkovich Ilya Viktorovich - Engineer-technologist of the Research Department of All Recycling Ltd, Petah Tikva, Israel, ORCID ID: 0000-0003-3497-4017, E-mail: ilya.berkovich1977@gmail.com
|
Abstract |
The leaching of silver, gold, and palladium from printed circuit boards in the bromine - bromide system after preliminary removal of the associated metals and copper has been investigated. It was established experimentally that the dissolution of gold with a turnover of leaching solution from a previously prepared PCB concentrate in comparison with the leaching of the original electronic scrap proceeds at a higher rate and much more completely, so the average degree of gold extraction rose from 87.2 to 89.39%. The consumption of bromine decreased from 20-32 to 12 kg Br2 per ton of scrap. So by seven leaching stages, it was possible to obtain a productive solution with the content, g · dm-3: 0.0652 Au, 0.015 Pb, 0.00052 Cu. Pretreatment PCB concentrate also increases the rate and completeness of silver and palladium leaching. At the same time, preliminary removal of the main part of copper allows reducing its content in the productive solution by almost 10 times. Under the conditions of collective leaching of silver, gold and palladium with a slightly acidic (pH = 1.98) bromine-bromide solution, with a content of 100.8 g · dm-3 of bromide ions, it is possible to convert 98.64% Au, 97.23% Ag and 98.33% Pd to the solution. The kinetics of precipitation of gold, silver and palladium from productive solutions using zinc dust, copper powder and hydrazine solution has been studied. As a results it was to precipitate gold on zinc dust in the form of cement powder with a purity of 99.4% and collective (Ag-Pd) and (Au-Ag-Pd) products using a 10% solution of hydrazine with content, mass. % : 1.18 Cu, 90.6 Ag, 7.2Pd and 1.2 Cu, 83.31Ag, 7.15 Pd, 7.95 Au, respectively.
|
Keywords |
hydrometallurgy of gold, silver, gold and palladium leaching in the bromine-bromide system, cementation of noble metals from bromide solutions.
|
References |
1 Kogan V.S., Berkovich I.V. Vyshchelachivaniya zolota, serebra, palladiya i platiny iz elektronnogo skrapa v brom- bromidnoy sisteme // -2019. (In press, in Rus.). 2 Yang C., Tan Q., Liu L., et al. Recycling Tin from Electronic Waste: A Problem that needs more attention// ACS Sustainable Chem. Eng.-2017.-№ 5.- P.2292-2301 (In Eng.). https://doi.org/10.1021/acssuschemeng.7b02903 3 Debnath B., Chowdhury R., Kumar S. Sustainability of metal recovery from E-Waste //Front. Environ. Sci. Eng. -2018.-№ 12(6).- P.2095-2201. 2301 (In Eng.). https://doi.org/10.1007/s11783-018-1044-9 4 Kim Y., Seo H., Roh Y. Metal Recovery from the Mobile Phone Waste by Chemical and Biological Treatments//Minerals.- 2018. -V. 8(1). -№8 (In Eng.). https://doi.org/10.3390/min8010008 5 Yang T., Zhu P., Liu W. et al. Recovery of Tin from metal powders of waste printed circuit boards// Waste Manag.- 2017.- № 68.- P.449-457 (In Eng.). https://doi.org/10.1016/j.wasman.2017.06.019 6 Seyed M., Seyed A., Azizi A., Hayati M. Copper leaching from waste printed circuit boards (PCBs) using sulfuric acid and hydrogen peroxide//Res. J. of Chem. and Eng.- 2019.-v.23(8)- P.1-9 (In Eng.). 7 Fabio dos Santos et al. Copper extraction from electronic scrap by oxidative acid leaching process //HydroCopper2011. 6th International Seminar on Copper Hydrometallurgy. - 6-8 July 2011. - Vila Del Mar. Chile.- P. 1-8; (In Eng.). 8 Sharma A., Sharma S., Badgi U., Gautman D. Copper Extraction from the discarded printed circuit boards by leaching// Inter. J. Appl. Res. -2017.v.3(3). - P. 634-637 (In Eng.). 9 Isidar A. et al. Two-step Leaching of Valuable Metals from Dis carded Printed Circuit Boards, and Process Optimization using Response Surface Methodology //Adv. Recycling Waste Manag.- 2017.- v. 2.- Iss. 2.- P. 2 -9. (In Eng.). https://doi.org/10.4172/2475-7675.1000132 10 Kogan V.S., Raykhman G.O. Gidrometallurgicheskoye izvlecheniye medi, olova i serebra iz produkta fiziko-mekhanicheskoy pererabotki elektronnogo skrapa // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). -2016. -No.1. -P.88-98 (In Rus.). https://doi.org/10.31643/2018/166445 11 Jimenez Correa M. et al. Separation copper from a leaching solution of printed circuit boards by using solvent extraction with D2EHPA // Brazilian Journ. Of Chem. Eng. September - 2018.- v. 35 (03) .- P.919-930 (In Eng.). 12 Kogan V.S., Raykhman G.O. Vydeleniye olova (IV) iz sul'fatno-khloridnykh rastvorov s pomoshch'yu Alamine 336 i Cyanex 923 // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2014.- № 4. Р.79-86. (In Rus.). https://doi.org/10.31643/2018/166445
|
Title |
INNOVATIVE TECHNOLOGIES PROVIDING ENHANCEMENT OF NON-FERROUS, PRECIOUS, RARE AND RARE EARTH METALS EXTRACTION
|
Author |
Kenzhaliyev B. K. (Almaty, Kazakhstan) |
Author´s information |
Kenzhaliyev Bagdaulet Kenzhalyuly – Doc.of Eng., Professor, General Director - Chairman of the Board of the Institute of Metallurgy and Ore Benefication, Vice-Rector for Scientific Research at Satbayev University, Almaty, Kazakhstan. E-mail: bagdaulet_k@satbayev.university, ORCID ID: 0000-0003-1474-8354 |
Abstract |
The article provides the technologies of enrichment and metallurgy processing of mineral and man-made raw materials. New technical solutions are proposed to increase the end-to-end copper extraction, industrial products processing of copper production to obtain high purity selenium; extraction of gold from resistant mineral raw materials with the use of new reagents and equipment, processing of ferrous bauxite and alumina production waste, extraction of rare and rare earth metals from industrial products and wastes of chrome, phosphorus and uranium production, obtaining rhenium and Nickel-cobalt concentrate from the wastes of heat-resistant Nickel alloys. Innovative Bayer-hydrogenative technology of ferruginous bauxite processing was developed and tested using pilot facility. The technologies and equipment to produce a composite hydrogen permeable membrane based on niobium and obtaining castings of implants by casting method of titanium alloys with application of additive technologies were developed. |
Keywords |
mineral raw materials, processing, technologies, copper, selenium, gold, rare metals, rare earth metals, new materials. |
References |
1. Coursol P., Valencia N.C., Macrey P., Bell S., Davis B. Minimization of Copper losses in Copper Smelting Slag During Electric Furnace Treatment // JOM (The Journal of The Minerals, Metals & Materials Society (TMS). 2012. Vol.64. №11. Pp.1305-1313 (In Eng.). https://doi.org/10.1007/s11837-012-0454-6 2. G.R.F. Alvear F., Hourn M. and J.C. Salas M. Xstrata Technology’s Approach for the Processing of Copper Bearing Materials // Proceedings of Copper 2013. Santiago, Chile, 2013. V.3. Pp.389-400 (In Eng.). 3. Kozhakhmetov S., Kvyatkovskiy S. The main results of research and industrial development of Vanyukov process in Kazakhstan //Vanyukov International Symposium on Sustainable Industrial Processing Summit & Exhibition. Turkey. 2016. V.5. P.267-272 (In Eng.). 4. Azhazha V.M., Papirov I.I., Shkuropatenko V.A., Lavrenovich A.G., Virich V.D. Rafinirovaniye vtorichnogo selena distillyatsionnymi metodami // Voprosy atomnoy nauki i tekhniki. 2004. №6. Seriya: Vakuum, chistyye materialy, sverkhprovodniki (14). S.21-23 (In Rus.). 5. Areshina N.S., Kasikov A.G., Mal'ts I.E., Zenkevich T.R. Izvlecheniye selena iz produktov gazoochistki OAO «Kol'skaya GMK» //Tsvetnyye metally. 2011. №11. S.62-65 (In Rus.). 6. Patent 32113 RK Apparat dlya rafinirovaniya selena /Volodin V.N., Trebukhov S.A., Abisheva Z.S., Marki I.A., Nitsenko A.V., Trebukhov A.A., Burabayeva N.M., Tuleutay F.KH. opubl. 30.05.2017. Byul. №10 (In Rus.). 7. Lebed' A. B., Naboychenko S. S., Shunin V. A. Proizvodstvo selena i tellura na OAO «Uralelektromed'». Yekaterinburg: Ural'skiy universitet, 2015. 112 s. (In Rus.). 8. Zagorodnyaya A. N, Abisheva Z. S., Sharipova A. S., Zhumabekov ZH. ZH. Polupromyshlennyye ispytaniya sorbtsionnoy tekhnologii izvlecheniya reniya iz stochnykh vod ot promyvki metallurgicheskikh gazov Balkhashskogo medeplavil'nogo zavoda // Tsvetnyye metally. 2016. №1. S. 49-55 (In Rus.). https://doi.org/10.17580/tsm.2016.01.08 9. Ignatkina V.A., Bocharov V.A., Tubdenova B.T. K poisku rezhimov selektivnoy flotatsii sul'fidnykh rud na osnove sochetaniya sobirateley razlichnykh klassov soyedineniy //Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2010. №1. S.97-104 (In Rus.). 10. Otrozhdenova L. A., Ryaboy V. I., Kuchayev V. A., Malinovskaya N. D. Flotatsiya mednykh sul'fidnykh rud geksilovym ksantogenatom firmy «Khokhst» //Obogashcheniye rud. 2010. №4. S.12-16 (In Rus.). 11. Advances in gold ore processing / M.D. Adams (Editor). Guilford: Mutis Liber PTY LTD, 2005. Pp. 1076 (In Eng.). 12. Gold-Copper Ores // Innovations in Gold and Silver Recovery: Phase IV / Randol Int Ltd.- Colorado, USA. 1992. V.8. Chapt 23. P.4175-4428 (In Eng.). 13. Borra C.R., Pontikes Y., Binnemans K., Gerven T.V. Leaching of rare earthes from bauxite residue (red mud) // Minerals Engineering. 2015. No76. Pp. 20-27 (In Eng.). https://doi.org/10.1016/j.mineng.2015.01.005 14. Patent №25938 RK Sposob pererabotki krasnogo shlama Byul.№7, opubl.15.07.2015 g. /Abdulvaliyev R.A., Beysembekova K.O., Gladyshev S.V., Kovzalenko V.A., Ibragimov A.T., Sabitov A.R., Tastanov Ye.A. (In Rus.). 15. Lokshin E.P., Ivanenko V.I., Tareyeva O.A., Korneyko R.I. Izvlecheniye lantanoidov iz fosfornokislykh rastvorov s ispol'zovaniyem sorbtsionnykh metodov /Zhurnal prikladnoy khimii. 2009. T.82. №4. S.544-551 (In Rus.). 16. Mikhaylichenko A.I., Papkova M.V., Kon'kova T.V., Tumanov V.V. Sorbtsionnoye izvlecheniye RZE iz rastvorov fosfornoy kisloty. M., 2014. S.51-55 (In Rus.). 17. Kosynkin V.D., Selivanovskiy T.T., Smirnov K.M., Krylova O.K. Kompleksnaya pererabotka fosfogipsa s polucheniyem khimicheski osazhdennogo mela, gipsa i kontsentrata redkozemel'nykh elementov //Tsvetnyye metally. 2012. №3. S.31-34 (In Rus.). 18. Patent 24889 RK. Sposob izvlecheniya redkozemel'nykh elementov iz matochnykh rastvorov uranovogo proizvodstva / Surkova T.YU., Mukusheva A.S., Yulusov S.B., Dulenin A.P., Gushchin A.P.,Barmenshinova M.B. Opubl. 15.12.2014. Byul. №12 (In Rus.). 19. Patent 10155791 DE. Process for electrochemical decomposition of superalloys / Stoller Viktor at al. 2003 (In Eng.). 20. Chernysheva O.V., Drobot D.V. Varianty elektrokhimicheskoy pererabotkiki reniysoderzhashchego zharoprochnogo splava // Khimicheskaya tekhnologiya. 2017. Tom 18. №1. S. 36-42 (In Rus.). 21. Agapova L.YA., Abisheva Z.S., Kilibayeva S.K., Yakhiyayeva ZH.Ye. Elektrokhimicheskaya pererabotka tekhnogennykh otkhodov reniysoderzhashchikh zharoprochnykh nikelevykh splavov v sernokislykh rastvorakh //Tsvetnyye metally. 2017. №10. S 56-61 (In Rus.). 22. Kenzhaliev B.K., Kvyatkovsky S. A., Kozhakhmetov S. M., Sokolovskaya L. V., Semenova A. S. (2018). Depletion of waste slag of balkhash copper smelter. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ. 306 (3), 45–53 (In Rus.). https://doi.org/10.31643/2018/6445.16 23. Zagorodnyaya A.N. Shlam sernokislotnogo tsekha balkhashskogo medeplavil'nogo zavoda - al'ternativnyy istochnik polucheniya selena na predpriyatii // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ. - 2018. - No. 4. - p. 46-55 (In Rus.). https://doi.org/10.31643/2018/6445.29 24. GOST 10298-79 (State standard). Selen tekhnicheskiy. Tekhnicheskiye usloviya. IUS No.4. 2004. http://docs.cntd.ru/document/gost-10298-79 (In Russ.) 25. Kenzhaliyev B.K., Trebukhov S.A., Volodin V.N., Trebukhov A.A., Tuleutay F.KH. Izvlecheniye selena iz promproduktov metallurgicheskogo proizvodstva // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ. - 2018. - No. 4. - p. 11-16 (In Rus.). https://doi.org/10.31643/2018/6445.30 26. Rulyov N., Тussupbayev N., Turusbekov D., Semushkina L., Kaldybayeva Z. Effect of microbubbles as flotation carriers on finesulphide ore beneficiation // Mineral Processing and Extractive Metallurgy. - 2018. - Vol.127. - N.3. - Pp.133–139 (In Eng.). https://doi.org/10.1080/03719553.2017.1351067 27. Abdyldayev N. N., Koizhanova A. K., Kamalov E. M., Zhanabay ZH. D., Akchulakova S. T. Doizvlecheniye zolota v kontsentrat iz lezhalykh khvostov metodom flotatsii // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ. – 2018. – №4. – p. 11-16 (In Rus.). https://doi.org/10.31643/2018/6445.25 28. Erdenova M., Kenzhaliyev B., Koizhanova A., Temirova S., Abdyldaev N. Extraction of gold from man-made mineral raw materials by Methods of flotation enrichment and cyaning // 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Science and Technologies in Geology, Exploration and Mining (In Eng.). https://doi.org/10.5593/sgem2018/1.4/s04.009 29. Kenzhaliev B.K., Kuldeev E.I., Abdulvaliev R.A., Pozmogov V.A., Beisembekova, K.O., Gladyshev S.V., Tastanov E.A. Perspektivy razvitiya alyuminiyevoy otrasli Kazakhstana //Izvestiya NAN RK Seriya geologii i tekhnicheskikh nauk. 2017. No. 3. S.151-160 (In Rus.). 30. Patent of the Republic of Kazakhstan No. 30113. Sposob pererabotki nizko-kachestvennykh zhelezistykh boksitov po Bayyer-gidrogranatovoy tekhnologii / Abdulvaliyev R.A., Gladyshev S.V., Tastanov Ye.A .; opubl. 08/15/2016 (In Rus.). 31. Patent RK No. 33499. Sposob pererabotki krasnogo shlama / Kenzhaliyev B.K., Akhmadiyeva N.K., Abdulvaliyev R.A., Gladyshev S.V., Omarova S.A., Manapova A.I., Zinov'yeva L.V. ot March 7, 2019. Byul No. 10 (In Rus.). 32. Gladyshev S.V., Abdulvaliyev R.A., Kenzhaliyev B.K., Dyusenova S.B., Imangaliyeva L.M. Razrabotka tekhnologii polucheniya khromitovogo kontsentrata iz shlamovykh khvostov obogashcheniya // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ (Complex Use of Mineral Resources). - 2018. - No. 1. - S.12-17 (In Rus.). https://doi.org/10.31643/2018/166445 33. Dyusenova S.B., Kenzhaliyev B.K., Abdulvaliyev R.A., Gladyshev S.V. Kompleksnaya gidrokhimicheskaya pererabotka shlamovykh khvostov obogashcheniya khromitsoderzhashchikh rud // Obogashcheniye rud. - № 6. - 2018. - S. 27-32. (In Rus.). 34. Pozmogov V.A., Kuldeev E.I., Dorofeev D.V., Imangalieva L.M., Kvyatkovskaya M.L. Determination of physicochemical properties and phase composition of ferrous sands of alumina production to find ways for their further processing // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ (Complex Use of Mineral Resources). - 2018. - No. 3. - S. 69-77 (In Rus.). https://doi.org/10.31643/2018/6445.19 35. Lokhova N.G., Naimanbaev M.A., Baltabekova Zh. A., Kasymzhanov K. K. (2018). Sorption rerecovery and concentration of rare-earth metals from extraction phosphoric acid. Review Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ. 306 (3), 62–68 (In Rus.). https://doi.org/10.31643/2018/6445.18 36. Kenzhaliyev B.K., Yesimova D.M., Surkova T.YU., Amanzholova L.U., Akchulakova S.T. Podgotovka produktivnykh rastvorov dlya izvlecheniya redkozemel'nykh elementov // Vestnik KazNITU. - 2018. - No. 5. - S.367-373 (In Rus.). 37. Patent RK No. 33153 Sposob izvlecheniya redkozemel'nykh elementov iz kremnistogo syr'ya / Kenzhaliyev B.K., Surkova T.YU., Yulusov S.B., Pirmatov E.A., Dulenin A.P. ot 10/01/2018 (In Rus.). 38. Agapova L.YA., Kenzhaliyev B.K., Abisheva Z.S., Kilibayeva S.K., Yakhiyayeva ZH.Ye., Altenova A.N., Ruzakhunova G.S. Polucheniye nikel'-kobal'tovogo kontsentrata iz otkhodov zharoprochnykh nikelevykh splavov // Trudy Kol'skogo nauchnogo tsentra RAN. Khimiya i materialovedeniye. - 2018.- No. 2 1/2018 (9), CH.2. - S. 798 – 803 (In Rus.). 39. Panichkin A.V., Mamayeva A.A., Derbisalin A.M., Kenzhegulov A.K., Imbarova A.T. Vliyaniye sostava nanosimykh na forekhnost 'plenok tverdykh rastvorov na kharakteristiki vodorodopronitsayemykh membran iz niobiya i tantala // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ. - 2018. - No. 4. - p. 130-139 (In Rus.). https://doi.org/10.31643/2018/6445.39 40. Mamaeva, A. A., Kenzhegulov, A. K., & Panichkin, A. V. (2018). A Study of the Influence of Thermal Treatment on Hydroxyapatite Coating. Protection of Metals and Physical Chemistry of Surfaces, 54 (3), 448–452 (In Eng.). https://doi.org/10.1134/s2070205118030115
|
Title |
INVESTIGATION OF THE LEACHING PROCESS OF RARE-EARTH METALS FROM THE BLACK SHALE ORES OF GREATER KARATAU |
Authors |
Baigenzhenov O.S., Yulussov S.B., Khabiyev A.T., Sydykanov M.M., Akbarov M.S (Almaty, Kazakhstan) |
Author´s information |
Baigenzhenov Omirserik Sabyrzhanovich - Doctor Ph.D., Assist. Professor, Satbayev University, department "Metallurgical processes, heat engineering and technology of special materials", Almaty, the Republic of Kazakhstan. ORCID ID: 0000-0001-5803-7680, E-mail: omir_88@mail.ru Yulussov Sultan Baltabaevich – Ph.D., student, Satbayev University, department "Metallurgical processes, heat engineering and technology of special materials", Almaty, the Republic of Kazakhstan. ORCID ID: 0000-0001-8044-4186, E-mail: s1981b@mail.ru Khabiyev Alibek Talgatbekovich – Doctor Ph.D., Assoc. Professor. Satbayev University, department "Metallurgical processes, heat engineering and technology of special materials", Almaty, the Republic of Kazakhstan. ORCID ID: 0000-0001-9397-2367, E-mail: alibek1324@mail.ru Sidikanov Muratbek Mukhtarbekovich – Engineer, Satbayev University, department "Metallurgical processes, heat engineering and technology of special materials", Almaty, the Republic of Kazakhstan. ORCID ID: 0000-0002-9988-6440. E-mail: mura_kaz@mail.ru Akbarov Merey Sabitovich – Assistant, Satbayev University, department "Metallurgical processes, heat engineering and technology of special materials", Almaty, the Republic of Kazakhstan. ORCID ID: 0000-0002-4272-8038, E-mail: akbarov_meron@mail.ru
|
Abstract |
The purpose of this investigation was studying the process of an acid leaching of vanadium and other valuable components from black shales of Big Karatau of the Republic of Kazakhstan. The maintenance of principal components in ore of 0,8% V2O5, 67,7% of SiO2, 3,1% of Al2O3, 0,3% of Mo, 0,2% of U3O8 and 0,05% of rare-earth metals. To provide this process was used low-temperature sintering and leaching of this type of raw material for the subsequent extraction of vanadium, uranium, molybdenum and rare earth metal concentrates. Moreover, it was established that with increasing concentration of sulfuric acid to 40 g/l, the degree of leaching of uranium, vanadium, molybdenum and rare earth metals (REM) increases noticeably. The degree of extraction of vanadium includes 81.7 %; uranium – 93,3%; molybdenum – 82.2 % and REM – 78.3%. Besides, it was determined the optimal leaching time, which takes 2 hours long, and the chemical composition of the cakes after leaching.
|
Keywords |
black shale, rare and rare earth metals, leaching, low-temperature sintering.
|
References |
1 Lee, J.-S., Chon, H.-T., & Kim, K.-W. (1998). Migration and dispersion of trace elements in the rock–soil–plant system in areas underlain by black shales and slates of the Okchon Zone, Korea. Journal of Geochemical Exploration, 65(1), 61–78 (In Eng.). https://doi.org/10.1016/s0375-6742(98)00054-5 2 Jeong, G. Y. (2006). Mineralogy and geochemistry of metalliferous black slates in the okcheon metamorphic belt, Korea: a metamorphic analogue of black shales in the South China block. Mineralium Deposita, 41(5), 469–481 (In Eng.). https://doi.org/10.1007/s00126-006-0067-5 3 Kozlov VA., Terlikbayeva A.Zh., Batrakova L.Kh., Nurzhanova of S. B. Uglerodistyye uran-vanadiyevyye slantsy Karatau. Promyshlennost' Kazakhstana. 2005. No. 1(28). 73-75 (In Rus.). 4 Seifert, A.G., Trumbore, S., Xu, X., Zhang, D., Kothe, E., & Gleixner, G. (2011). Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation. Geochimica et Cosmochimica Acta, 75(10), 2557–2570. https://doi.org/10.1016/j.gca.2011.02.037 5 Aymbetova I.O. Razrabotka tekhnologii proizvodstva oksida vanadiya iz chernykh slantsev Bol'shogo Karatau / Dissertatsiya na soiskaniye uchenoy stepeni kandidata tekhnicheskikh nauk. Almaty. 2010. pp. 126 (In Rus.). 6 Xian Zhong Cheng, KaiXu Chen, HuaiCheng, LiPing Zhang. Extraction of Vanadium from Chinese Black Shale by Roasting Using Na2CO3-BaSO4 Mixture Addition. Transactions of Nonferrous Metals Society of China. 2010. Vol.20. 107-111 (In Eng.). 7 Kenzhaliyev B.K., Surkova T.YU., Yulusov S.B., Pirmatov E.A., Dulenin A.P. Polucheniye kontsentrata redkozemel'nykh elementov iz otkhodov i promproduktov uranovoy promyshlennosti // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ (Complex Use of Mineral Resources). – 2017. - №1.- S 70-77 (In Rus.). https://doi.org/10.31643/2018/166445 8 Smirnov K. M., Molchanova T. V., Akimova I. D., Krylova O. K. (2018). Efficient Technology for Combined Processing of Silicate and Carbonate Uranium Ores. Atomic Energy, 124(2), 111–117 (In Eng.). https://doi.org/10.1007/s10512-018-0383-8 9 Li Min-ting. Pressure acid leaching of black shale for extraction of vanadium // Тransactions of nonferrous metals society of Сhina. - 2010. - № 20. – Р.112-117 (In Eng.). 10 Liang J.L., Liu H.J., Shi W.G., Hu E.M., Li X.Q., Peng J., A study of a new technology leaching of vanadium ores with hydrometallurgy // China mining magazine. – 2006. - № 15. – Р. 64–66 (In Eng.). 11 Kenzhaliyev B. K., Surkova T. YU., Yessimova D. M. Concentration of rare-earth elements by sorption from sulphate solutions // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. (Complex Use of Mineral Resources) – 2019. –№3. – P. 5-9. https://doi.org/10.31643/2019/6445.22 |