PREFACE
Dear Readers and Colleagues! Some joint papers, written with scientists from the UK, Malaysia and Israel, have been presented in this issue of the journal "Complex Use of Mineral Resources". which means that there is not only interest from Kazakhstani metallurgists as well as from other countries worldwide.
The amount of readers is constantly expanding. In total, approximately more than 52% of our readers are out of Kazakhstan, especially 18% from Russia, 12.3% from the United States, 22 % from other countries.
Impact factor of the journal is gradually increasing. According to the Kazakhstani Database, it indicates 0,204. Our journal enters the top ten best journals of the Republic of Kazakhstan. The total number of citations in the Russian index of citation has reached more than 1078 up to 2019.
This year's most important event is the International Internet Conference on ‘Challenges of Sciences', which was held on November 22, 2019. Journal participates in an informational partner at the conference, which will bring the best results to the conference, which will be published in the next issues.
To sum up, I would like to wish to all authors and readers of the magazine the newest perspectives on the domestic and metallurgical science and production, which will further contribute to the development of the metallurgical industry.
Chief editor, Prof Dr Kenzhaliyev Bagdaulet
E-mail: journal@kims-imio.kz
Title |
The effect of blend copolymers on physico-mechanical properties of mortar |
Authors |
Bekbayeva L., El-Sayed Negim, Yeligbayeva G., Ganjian E. |
Author´s information |
Bekbayeva L. - Ph.D. student, School of Chemical and Biological Technologies, Satbayev University, Almaty, Kazakhstan. ORCID ID: 0000-0002-0804-1259. E-mail: lyazzat_bk2019@mail.ru El-Sayed Negim- Ph.D. Professor, School of Chemical Engineering, Kazakh-British Technical University, Almaty, Kazakhstan. ORCID ID: 0000-0002-4370-8995. E-mail: elashmawi5@yahoo.com G. Yeligbayeva- Ph.D. Professor, School of Chemical and Biological Technologies, Satbayev University, Almaty, Kazakhstan. ORCID ID: . E-mail: gulzhakh@yandex.ru E. Ganjian- PhD. Professor School of Energy, Construction and Environment, Faculty of Engineering, Environment & Computing, Sir John Laing Building, JL138, Coventry University, Coventry, CV1 2HF, the UK. ORCID ID: 0000-0002-1522-1434. E-mail: cbx111@coventry.ac.uk
|
Abstract |
The present study investigates the effect of blend copolymers on the physico-mechanical properties of mortar mixes. Blend copolymers were synthesized based on poly vinyl alcohol (PVA) and urea (U) in aqueous solution with different blend ratios 65/35, 50/50 and 35/65 respectively, using glacial acetic acid as crosslinking. Physico-mechanical properties of mortar examined included water/cement ratio, setting time, workability, water absorption and compressive strength. The addition of blend copolymers to the mortar affected the physico-mechanical properties of mortar mixes. As the content of PVA increases in the blend copolymers, the water of consistency decrease, whereas the setting times (initial & final) were shortened. The compressive strength of the hardened cement pastes was increased at all ages of hydration while water absorption decreased. |
Keywords |
Mortar, PVA, urea, cement, compressive strength, workability. |
References |
[1] Ohama Y. Recent research and development in concrete-polymer composites // Proceedings of the 8th CANMET/ACI Int. Conf. on Recent Advances in Concrete Technology, ed. V. M. Malhotra, Montreal, Quebec. - 1994. -P.753-783, (In Eng.). [2] Bright R., Mraz T. and Vassallo J. The influence of various polymeric materials on the physical properties of a cementitious patching compound // ASTM publication on Polymer modified Hydraulic-cement mixtures, Ed. Kuhlman L.A., and Walters D.G. - 1999. - P.155–162, (In Eng.). [3] Singh N.B., and Sarita Rai. Effect of polyvinyl alcohol on the hydration of cement with rice husk ash // J. Cem. Con. Research. - 2001. - Vol.31. - P.239, (In Eng.). [4] Moukwa M., Youn D., Hassanali M. Effects of degree of polymerization of water-soluble polymers on concrete properties // Cem. Concr. Res. - 1993. - Vol.23, Is. 1. - P.122–130, (In Eng.) [5] Sivakumar M.V.N. Effect of polymer modification on mechanical and structural properties of concrete – an experimental investigation // Int. J. Civ. Struct. Eng. - 2010. - Vol.1, Is.4. - P.732–740. http://dx.doi.org/10.6088/ijcser.00202010061 (In Eng.). [6] Allahverdi A., Kianpur K., Moghbeli M.R. Effect of polyvinyl alcohol on flexural strength and some important physical properties of Portland cement paste // Iran. J. Mater. Sci. Eng. - 2010. - Vol.7, Is.1. -P.1–6, (In Eng.). [7] Kim J.H., Robertson R.E., Naaman A.E. Structure and properties of poly (vinyl alcohol) – modified mortar and concrete // Cem. Concr. Res. - 1999. - Vol.29, Is.3. - P.407– 415, (In Eng.). http://dx.doi.org/10.1016/S0008-8846(98)00246-4 [8] Kim J.H., Robertson R.E. Effects of polyvinyl alcohol on aggregate-paste bond strength and the interfacial transition zone // Adv. Cem. Based Mater. - 1998. - Vol.8, Is.2. -P.66–76, (In Eng.). [9] Kim J.H., Robertson R.E. Prevention of air void formation in polymer-modified cement mortar by prewetting // Cem. Concr. Res. - 1997. - Vol.27, Is.2. - P.171–176, (In Eng.). [10] Ohama Y. Polymer-based admixtures // Cem. Concr. Compos. - 1998. - Vol.20, Is.2–3. - P.189–212. [11] Negim E., Kozhamzharova, L., Khatib J., Bekbayeva L., Williams C. Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer // The Scientific World Journal. -2014. - P.1-10, (In Eng.). [12] El-Sayed N., Bekbayeva L., Irmukhametova G., Kuzhantayeva A., Sultanova D., Suleimenova A., Mun G. Utilization of styrene copolymer lattices (DBSS/PVA) as chemical admixture for mortar // International Journal of Biology and Chemistry. - 2016. - Vol. 9, Is.2. -P. 27-31, (In Eng.). [13] El-Sayed Negim, Jamal Khatib, Mohammed Muhanna Mohammed, Syrmanova Kulash Kerimbaevna. The Effect of Molar Ratios of the Monomers on the Physico - Mechanical Properties of Portland Cement Mortar // World Applied Sciences Journal. - 2012. - Vol.19, Is.6. - P.832-837, (In Eng.). [14] Boutti S., Urvoy M., Dubois-Brugger I., Graillat C., Bourgeat-Lami E., Spitz R. Influence of Low Fractions of Styrene/Butyl Acrylate Polymer Latexes on Some Properties of Ordinary Portland Cement Mortars // Journal of Macromolecular Materials and Engineering. -2007. - Vol.292, Is.1. - P.33-45, (In Eng.). [15] El-Sayed Negim, Lyazzat Bekbayeva, Hanan Adam, Yeligbayeva G., Eshmaiel Ganjian, Muhammad Saleh, Bahruddin Saad. The effect of blend ratios on physico- mechanical properties and miscibility of cross-linked poly (vinyl alcohol)/urea blends // Journal of Physics: Conf. Series 1123. - 2018. – 012066, (In Eng.). [16] Negim E.S.M, Yeligbayeva G.Zh., Niyazbekova R., Rakhmetullayeva R., Mamutova A.A., Iskakov R., Sakhy M., Mun G.A. Studying physico-mechanical properties of cement pastes in presences of blend polymer as chemical admixtures // International Journal of Basic and Applied Sciences. – 2015. - Vol.4, Is.3. - P.297-302, (In Eng.). [17] ASTM C204-82, Standards Test Method. – 1993, (In Eng.). [18] ASTM C187-86, American Standard Test Method. – 1993, (In Eng.). [19] ASTM C191-92, American Standard Test Method. – 1993, (In Eng.). [20] BS 1881: Part 122. Testing concrete // Method for determination of water absorption. – 1983, (In Eng.). [21] ASTM C170-90, American Standard Test Method. – 1993, (In Eng.). [22] Toutanji H.A., El-Korchi T. (1995). The influence of silica fume on the compressive strength of cement paste and mortar // Cement and Concrete Research. – 1995. - Vol.25, Is.7. – P.1591-1602, (In Eng.). [23] Rixom R., Mailvaganam N. Chemical admixtures for concrete // E and FN Spon, London. – 1999, (In Eng.). [24] Aïtcin P.C., Jolicoeur C., MacGregor J.G. 1994. Concrete International. – 1994. -Vol.16. – P.45, (In Eng.). [25] Allahverdi A., Kianpur K., Moghbeli M.R. Iranian Journal of Materials Science and Engineering. – 2010. – Vol.7, (In Eng.). [26] Singh R.K., Rai U.S. Effect of polyacrylamide on the different properties of cement and mortar // J. Mater, Sci. Eng., - 2005 A. - P.392, (In Eng.). [27] Ohama, Y. Principle of latex modification and some typical properties of latex modified mortar and concrete // J. ACI Mater., - 1987. – Vol.86. -P.511, (In Eng.). [28] Shaker F.A. Durability of styrene butadiene latex modified concrete // Journal of Chemical Concrete Research. - 1997. – Vol.27, Is.5. – P.711, (In Eng.). [29] Lea H., Neville K. Handbook of Epoxy Resins // Mc Grew. Hill, New York. – 1967, (In Eng.). [30] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75, https://doi.org/.10.31643/2019/6445.30 (In Eng.). [31] El-Sayed, N., Bekbayeva , L., & Omurbekova , K. Synthesis and characterization of anticorrosion emulsion latexes for metal. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ (Complex Use of Mineral Resources). 307(4), 140–148. 2018. https://doi.org/10.31643/2018/6445.40 (In Eng.). |
Title |
Synthesis of finely dispersed forms of zinc oxide doped with rare-earth elements (review)
|
Authors |
Kemelbekova А.E., Mukhamedshina D.M.
|
Author´s information |
Kemelbekova Ainagul Erzhanovna - Master of technical sciences, Satbayev University, The Institute of Physics and Technology, Almaty, Kazakhstan. ORCID ID: 0000-0003-4813-8490, E-mail: a.kemelbekova@mail.ru Mukhamedshina Daniya Mahmudovna - Candidate of physical and mathematical sciences, The Institute of Physics and Technology, Almaty, Kazakhstan.
|
Abstract |
The paper summarizes the literature data, considers methods for producing highly dispersed forms of zinc oxide doped with rare earth elements. Alloying ZnO with rare earths and 4d transition elements is a popular method of manipulating the optical properties of ZnO systems. These systems may also have their own ferromagnetism due to their magnetic moment transmitted to 4f and 4d electrons. Investigations of authors in this field with the aim of using ZnO in metal / oxide composites are also described: the properties of zinc oxide doped REM powders obtained by various technological methods are studied. We studied the work on obtaining the described structures, the selection of the best technological parameters for the growth of thin films. In connection with the development of nanotechnology, REE compounds have become even more popular and are used to produce nanoluminophores, thin films, microporous membranes, and sol-gel glasses.
|
Keywords |
zinc oxide, rare earth elements, phosphors, CVD method, hydrothermal method, micropowder. |
References |
[1] Naseri N., Solaymani S., Ghaderi A., Bramowicz M., Kulesza S., Ţălu Ş., Pourreza M., Ghasemi S. Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro and nanoscale.// RSC Adv. 2017. 7(21). 12923–12930 (in . Eng). https ://doi.org/10.1039/c6ra2 8795f [2] Ţălu Ş., Bramowicz M., Kulesza S., Ghaderi A., Solaymani S., Savaloni H., Babaei R. Micromorphology analysis of specific 3-D surface texture of silver chiral nanoflower sculptured structures. // Journal Ind. Eng. Chem. 2016. 43. 164–169 (in . Eng). https ://doi.org/10.1016/j.jiec.2016.08.003 [3] Zare M., Solaymani S., Shafiekhani A., Kulesza S., Talu S., Bramowicz M. Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting. // Sci. Rep. 2018. 8(1). 10870. (in . Eng). https ://doi.org/10.1038/s4159 8-018-29247 -3 [4] Solaymani S., Ghaderi A., Dejam L., Garczyk, Ż., Sapota, W., Stach, S., Dalouji, V., Luna, C., Elahi, S.M., Elahi S.H. Correlation between the multifractal structure, crystalline and photoluminescence properties of engineered CZO thin films. // J. Hydrog. Energy. 2017. 42(20). 14205–14219 (in . Eng). https ://doi.org/10.1016/j.ijhyd ene.2017.04.045 [5] Dejam L., Mohammad Elahi S., Nazari H.H., Elahi H., Solaymani S., Ghaderi A. Structural and optical characterization of ZnO and AZO thin films: the influence of post-annealing .// Journal Mater. Sci. Mater. Electron. 2015.27(1).685–696 (in . Eng). https ://doi.org/10.1007/s1085 4-015-3804-7 [6] Dalouji V., Solaymani,S., Deja, L., Elahi S.M., Rezaee S., Mehrparvar D. Gap states of ZnO thin films by new methods: optical spectroscopy, optical conductivity and optical dispersion energy. // Chin. Phys. Lett. 2018. 35(2). 027701 (in . Eng). https ://doi.org/10.1088/0256-307x/35/2/02770 1 [7] Pal P.P., Manam J. Evaluation of kinetics parameters in theX-irradiated TSL studies of RE3+-doped (RE = Eu, Tb) ZnO nanorods for dosimetric applications. // Appl. Phys. A. 2013.116(1)..213–223 (in Eng.). https ://doi.org/10.1007/s0033 9-013-8095-3 [8] Geetha Devi, P., Sakthi Velu, A. Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. // J. Theor. Appl. Phys.2016. 10. 233–240. (in . Eng) https ://doi.org/10.1007/s4009 4-016-0221-0 [9] Pearton S.J., Norton DP., Ip, K., Heo, Yw. and Steiner, T. Recent advances in processing of ZnO.//J. Vac. Sci. Terchnol. 2004. 22. 932-954 (in . Eng). [10] Zhong, Lw. Zinc oxide nanostructures: growth, properties and applications. // J. Phys. Cond. Matter. 2004. 16. R829-R858. (in . Eng) [11] Xu Cx., Sun Xw., Chen Bj., Shum P., Li S. and Hu X. Nanostructural zinc oxide and its electrical and optical properties. // Journal of Applied Physics. 2004. 95. 661-666 (in . Eng). [12] Bagnall, Dm., Chen, Yf., Zhu, Z., Yao, T., Koyama, S., Shen, My. and Goto, T. Optically pumped lasing of ZnO at room temperature. // Applied Physics Letters. 1997. 70. 2230-2232 (in . Eng). [13] Li Sy., Lin P., Lee Cy. and Tseng Te. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. // Journal of Applied Physics. 2004. 95. 3711-3716 (in . Eng). [14] Xu Cx., Sun Xw. and Chen BJ. Field emission from gallium-doped zinc oxide nanofiber array. // Applied Physics Letters. 2004. 84. 1540-1542 (in . Eng). [15] Zhu Yw., Zhang Hz., Sun Xc., Feng Sq., Xu J., Zhao Q., Xiang B., Wang Rm. and Yu Dp. Efficient field emission from ZnO nanoneedle arrays. // Applied Physics Letters. 2003. 83.144-146 (in . Eng). [16] Park Yk., Han Ji., Kwak Mg., Yang H., Ju Sh. and Cho Ws. Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors. // Applied Physics Letters. 1998. 72. 668-670 (in . Eng). [17] Fujihara S., Suzuki A. and Kimura T.. Ga-doping effects on electrical and luminescent properties of ZnO: (La,Eu)OF red phosphor thin films. // Applied Physics Letters. 2003. 94. 2411-2416 (in . Eng). [18] Al Rifai S. A., Ryabtsev S. V., Smirnov M. S., Domashevskaya E. P., and Ivanov O. N., Synthesis of europium–doped zinc oxide micro- and nanowires // Russian Journal of Physical Chemistry A. 2014. 88. 108–111 (in . Eng). [19] Kaur R., Singh A. V., Sehrawat K., Mehra N. C., and Mehra R. M., Sol-gel derived yttrium doped ZnO nanostructures. // Journal of Non-Crystalline Solids. 2006. 352. 2565–2568 (in . Eng). [20] Natsume Y., Sakata H., Hirayama T., and Yanagida H. Low temperature conductivity of ZnO films prepared by chemical vapordeposition. // Journal of Applied Physics. 1992.72. 4203–4207 (in . Eng). [21] Xu J. P., Shi S. B., Zhang X. S., Wang Y. W., Zhu M. X., and Li L., Structural and optical properties of (Al,K)-co-doped ZnO thin films deposited by a sol-gel technique. // Materials Science in Semiconductor Processing. 2013. 16. 732–737 (in . Eng). [22] Aranovich J., Ortiz A., and Bube R. H. Optical and electrical properties of ZnO films prepared by spray pyrolysis for solar cell applications. // Journal of Vacuum Science & Technology. 1979. 16. 994–1003 (in . Eng). [23] Ye X.R., Jia D.Z., Yu J.Q., Xin X.Q. and Xue Z.L.Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. // Journal of Nanomaterials. 1999. 11. 937–941 (in . Eng). [24] Mishra S.K., Srivastava R.K., Prakash S.G., Yadav R.S., and Pandey A.C., Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam. // Opto-Electronics Review. 2010. 18. 467–473 (in . Eng). [25] XU, CX. and SUN, XW. Field emission from zinc oxide nanopins. // Applied Physics Letters. 2003. 83. 3806-3808 (in . Eng). [26] Malyutina-Bronskaya V.V., Zalesskii V.B., Leonova T.R.. Elektricheskie svoistva plenok oksida zinca, legirovannyh redkozemelnymi elementami. // Dokladi BGUIR. 2011.6. 39–43 (in . Rus). [27] Kenzhaliyev, B. K., Surkova, T. Y., & Yessimova, D. M. (2019). Concentration of rare-earth elements by sorption from sulphate solutions. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, 3(310), 5–9. (In Eng.). https://doi.org/10.31643/2019/6445.22 [28] Каrboz Zh. А., Dossayeva S. К. Issledovaniye vodorodopronitsayemosti membran, pokrytykh razlichnymi metallicheskimi plenkami (obzor) // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). – С. 48-54. (In Rus.). https://doi.org/10.31643/2019/6445.28 [29] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75. (In Eng.). https://doi.org/.10.31643/2019/6445.30
|
Title |
Synthesis and characterization of vinyl acetate graft copolymers
|
Authors |
Myrzakhanov Maxat, El-Sayed Negim, Mohammad Nasir
|
Author´s information |
Myrzakhanov Maxat Makhmudovich – PhD student at Satbayev University, ORCID ID: 0000-0001-7769-6251, e-mail: m_myrzakhanov@yahoo.com El-Sayed Negim – PhD, professor, JSC “Kazakh-British Technical University”, ORCID ID: 0000-0002-4370-8995, e-mail: elashmawi5@yahoo.com Mohamad Nasir – PhD, Associate professor at School of Chemical Sciences, Universiti of Sains Malaysia, ORCID ID: 0000-0002-6784-5775. e-mail: mnm@usm.my
|
Abstract |
Graft copolymer P(mPEG-g-VAc) have been prepared by the graft polymerization with a different ratios of mPEG with Mn=2000 macromonomers and Vinyl acetate VAc in the presence of benzoyl peroxide as an initiator using a macro radical initiator technique under influence of heating in toluene has been observed. The graft copolymer P(mPEG-g-VAc) thus formed was characterized with scanning electron microscope SEM, nuclear magnetic resonance 1H NMR, 13C NMR, differential scanning calorimeter DSC, thermo gravimetric analyzer TGA and Fourier transform infrared FT-IR techniques. The results of characterization techniques shows formation of copolymer P(mPEG-g-VAc) while the optimum condition among the studied parameters were as follows; monomer concentration 0.4 mole L-1, ratio (10:90), reaction temperature is 60-85 0C and reaction time is 3 h.
|
Keywords |
polyethylene glycol methyl ether, vinyl acetate, free radical polymerization, catalyst, characterization. |
References |
[1] Vidyagauri V. Lele, Savita Kumari and Harshada Niju. Syntheses, Characterization and Applications of Graft Copolymers of Sago Starch – A Review // Starch ‐ Stärke, 2018. –V. 70, - Issue 7-8, (In Eng.). https://doi.org/10.1002/star.201700133 [2] David W. Jenkins, Samuel M. Hudson. Review of Vinyl Graft Copolymerization Featuring Recent Advances toward Controlled Radical-Based Reactions and Illustrated with Chitin/Chitosan Trunk Polymers // Chem. Rev. 2001, -V. 101, -P. 3245−3273, (In Eng). https://doi.org/10.1021/cr000257f [3] Ueda J, Kamigaito M, Sawamoto M (1998) Macromolecules 31(20): 6762-6768, (In Eng). https://doi.org/10.1021/ma980608g [4] Shinoda H, Miller P. J, Matyjaszewski K (2001) Macromolecules 34(10): 3186-3194, (In Eng). [5] Noshay A and McGrath J. E (1977) Block Copolymers: Overview and Critical Survey, Academic Pres, New York, (In Eng). [6] Ceresa R.J (ed.) (1976) Block and Graft Copolymerization, Vols. 1 and 2, Wiley, London. papers [11, 12], (In Eng). [7] Ueda M (1999) Prog. polym. sci. 24: 699-730, (In Eng). [8] Bhattacharya A, Misra B. N (2004) Prog. polym. sci. 29: 767-814, (In Eng). [9] Hamley, I. W. In The Physics of Block Copolymers; Oxford University Press: New York, 1998; Chapter), (In Eng). [10] Yinghai Liu, Libin Bai, Rongyue Zhang,1 Yanxiang Li, Yuanwei Liu, Kuilin Deng, Block Copolymerization of Poly(ethylene glycol) and Methyl Acrylate Using Potassium Diperiodatocuprate(III), Journal of Applied Polymer Science, Vol. 96, 2139–2145 (2005), (In Eng). https://doi.org/10.1002/app.21594 [11] C. Valverde, G. Lligadas, J.C. Ronda, M. Galià, V. Cádiz. PEG-modified poly (10,11-dihydroxyundecanoic acid) amphiphilic copolymers. Grafting versus macromonomer copolymerization approaches using CALB // European Polymer Journal 109 (2018), –P. 179–190, (In Eng). https://doi.org/10.1016/j.eurpolymj.2018.09.032 [12] L.Huang, J.Chen, M. He, X. Hou, Y. Lu, K. Lou, F. Gao. Nanoparticle structure transformation of mPEG grafted chitosan with rigid backbone induced by α-cyclodextrin // Chinese Chemical Letters, 2019. -V.30, -I.1, -P. 163-166, (In Eng). https://doi.org.10.1016/j.cclet.2017.12.012 [13] Kenzhaliyev, B. K., Surkova, T. Y., & Yessimova, D. M. (2019). Concentration of rare-earth elements by sorption from sulphate solutions. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, 3(310), 5–9, (In Eng.). https://doi.org/10.31643/2019/6445.22 [14] Каrboz Zh. А., Dossayeva S. К. Issledovaniye vodorodopronitsayemosti membran, pokrytykh razlichnymi metallicheskimi plenkami (obzor) // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). – С. 48-54, (In Rus.). https://doi.org/10.31643/2019/6445.28 [15] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75. (In Eng.). https://doi.org/.10.31643/2019/6445.30 [16] El-Sayed, N., Bekbayeva , L., & Omurbekova , K. Synthesis and characterization of anticorrosion emulsion latexes for metal. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ (Complex Use of Mineral Resources). 307(4), 140–148 2018, (In Eng). https://doi.org/10.31643/2018/6445.40 |
Title |
Disposal of slag of refined ferrochromium by obtaining a sintered and carbonized construction products
|
Authors |
Sariyev O.R., Musabekov Z.B., Dossekenov M.S.
|
Author´s information |
Sariyev Otegen Rafhatovich – docent of the Department of metallurgy and mining technical faculty of K.Zhubanov Aktobe regional state university. Candidate of technical Sciences. E-mail: rafhatsson@mail.ru Musabekov Zhalgasbay Bereketovich – master student of the Department of metallurgy and mining technical faculty of K.Zhubanov Aktobe regional state university, Kazakhstan. Dossekenov Murat Sagitzhanovich – engineer of the Department of metallurgy and mining technical faculty of K.Zhubanov Aktobe regional state university, Kazakhstan. E-mail: dossekenov.ms@mail.ru ORCID ID: 0000-0003-2483-8118
|
Abstract |
The article investigates the material composition of refined ferrochromium slag. It has been confirmed that the main compound in the slag is dicalcium silicate. The disposal problem of self-disintegration slag in the current production of refined ferrochromium can be solved by controlling its basic capacity with obtaining stabilized lump slag that is not influenced to silicate decomposition. This became the basis to researches the production of non-disintegrating burnt construction products from slags using low-melting silica-containing additives that reduce the slag basicity. Briquettes roasting containing from 20 to 30% additives in the temperature range of 1200-1225 °C showed the possibility of obtaining ceramic construction products. Material analysis of the slag also showed that the slag components, such as calcium oxide and magnesium oxide, are compounds prone to the formation of carbonates, which leads to the setting between the slag particles. Which makes it possible to obtain construction products in the process of autoclaving processing of bricks from the slag in the carbon dioxide environment. The influence of fineness, slag moisture, and the dwell time of products in an autoclave in the carbon dioxide environment on the strength of the resulting pellets were evaluated in this paper. It was determined that moderate humidity, in addition to increasing ductility during pellet molding, also increases the strength of products after carbonization. Excessive grinding of slag negatively affected on the quality of the pellets. The increase in compression force during the pellets formation, on the contrary, increased the strength of the products. An increase in the duration of carbonization at constant pressure had a positive effect on the strength increase of pellets.
|
Keywords |
self-disintegration slag, recycling, construction products, sintering, carbonization. |
References |
[1] Makarov A. B. Tekhnogenno-mineral'nyye mestorozhdeniya Urala (Technogenic and mineral deposits of the Urals). autoref. dis... doctor of geological and mineralogical sciences.: Ekat.: 25.00.11. – 2006. – 23 p. (in Russ.). [2] Lyakishev N.P., Gasik M.I. Metallurgiya khroma (Metallurgy of Chrome). – M: ELIZ. – 1999. – 454 p. (in Russ.). [3] Khitrik S.I., Emlin B.I., Em A.P. and others. Elektrometallurgiya ferrokhroma (Electrometallurgy offerrochrome). – M: Metallurgy. – 1968. – 148 p. (in Russ.). [4] Yesenzhulov A.B. Razrabotka i vnedreniye tekhnologii proizvodstva rafinirovannykh marok ferrokhroma s ispol'zovaniyem boratovykh rud (Development and implementation of the technology for the production of refined grades of ferrochrome using borate ores) diss. ... cand. tech. scient:. 05.16.02. – Karaganda.: CMI. – 2006. – 131 p. (in Russ.). [5] Bobkova O.S., Barseghyan V.V., Toptygin A.I. Razrabotka i osvoyeniye kompleksnoy tekhnologii proizvodstva nizkouglerodistogo ferrokhroma s ispol'zovaniyem shlakov v narodnom khozyaystve (Development and mastering the complex technology of low carbon ferrochrome using slag in the national economy). // Steel. - 1993, N. 10. – P. 41-45. (in Russ.). [6] Lapin V.V., Zayko V.P. Fazovyy sostav shlakov rafinirovannogo ferrokhroma (Phase composition of refined ferrochrome slag). // Steel. – 1965. N. 11. - P. 108–113. (in Russ.) [7] Babin P.N., Scheglov A.G., Prokhorova R.G. Issledovaniye sinteza magnezial'nykh shpineley (Investigation of synthesis of magnesian spinels). // Proceedings of the IMiO Academy of Sciences of Kazakh SSR – 1970. - Ch. 38. – P. 67-78. (in Russ.). [8] Akberdin A.A. Balansovyy metod rascheta ravnovesnogo fazovogo sostava mnogokomponentnykh sistem (The balance method for calculating the equilibrium phase composition of multicomponent systems). // Integrated use of mineral raw materials. – 1995. N. 3. – P. 92-93, (in Russ.). [9] Domokeev A.G. Stroitel'nyye materialy (Construction Materials). – M: Higher school, 1989.– 496 p., (in Russ.). [10] Malkova M.Yu., Ivanov A.S. Keramicheskiye svoystva shlakov (Ceramic properties of slag). [Electron resource] – 2006. – URL: http://www.newchemistry.ru/letter.php?n_id=4008&cat_id=24&page_id=1 (access date: 18.10. 2018), (in Russ.). [11] Bondarenko I.V., Tastanov Y.A., Sadykov N. M-K., Ismagulova M.S. Pererabotka mineral’noi chasti shlakov rafinirovannogo ferrochroma s polucheniem granulirovannogo poristogo teploizolyatcionnogo materiala. (Processing of mineral part of refined ferrochrome slags to obtain pelleted porous heat insulator) // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, 2018. 307(4), 158–165. (In Rus.). https://doi.org/10.31643/2018/6445.42 [12] Terekhovich S.V., Seitzhanov K.S., Khlebov A.P., Goncharov V.N., Estemesov Z.A. Tverdeniye i svoystva putstsolanovykh tsementov (Solidification and properties of pozzolanic cements) // Alma-ata: CLCTBM. – 2001. – 395 p. (in Russ.) [13] Johnson D.C. Accelerated carbonation of stainless steel slag. // Environmental Technology. – 2003. – V. 24. Issue 6. – Р. 35 – 44. (in Eng.). https://doi.org/10.1080/09593330309385602 [14] Zhen He, Huamei Yang, Yixin Shao, Meiyan Liu. Early carbonation behaviour of no-clinker steel slag binder. // Advances in Cement Research. – 2013. – V. 25. Issue 6. – Р. 342 –351. (in Eng.). https://doi.org/10.1680/adcr.12.00054 [15] Huijgen R.N.J. Comans G.J. Mineral CO2 sequestration by steel slag carbonation. // Environmental Science & Technology. – 2005. – N 29. – Р. 76-82. (in Eng.). https://doi.org/10.1021/es050795f [16] Monastyrev A.V. Proizvodstvo izvesti (Production of lime), 3-rd ed., Revised. and add. – M .: Higher. School. – 1978. – 1385 p. (in Russ.). [17] Ruzavin A.A. Primenenie metoda uskoryennoi korbanizacii v tekhologii betonnogo proizvodstva. (The application of accelerated carbonation method in concrete production technology) // Bulletin of SUSU. “Construction and Architecture” part. – 2017. V. 17, №3. P.72-75, (in Russ.). [18] Abdrakhmanov E.S., Bozymbaev G.D., Analiz na faktory, vliyayushchiye na protsess briketirovaniya syr'ya (Nurgalieva M.S. Analysis of factors affecting the briquetting process of raw materials). // Science and technology of Kazakhstan. – 2011, N. 1-2. – P. 7 – 12, (in Russ.). [19] Ayapov U.A., Ilyasov T.N. Karbonizatsiya raspadayushchegosya shlaka v prisutstvii dobavok (Carbonization of decaying slag in the presence of additives). // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex use of mineral raw materials). – 1981, N. 7. – P. 77 – 80, (in Russ.). [20] Kenzhaliyev, B. K., Surkova, T. Y., & Yessimova, D. M. (2019). Concentration of rare-earth elements by sorption from sulphate solutions. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, 3(310), 5–9, (In Eng.). https://doi.org/10.31643/2019/6445.22 [21] Каrboz Zh. А., Dossayeva S. К. Issledovaniye vodorodopronitsayemosti membran, pokrytykh razlichnymi metallicheskimi plenkami (obzor) // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, 2019. 3(310), 48–54, (In Rus.). https://doi.org/10.31643/2019/6445.28 [22] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75, (In Eng.). https://doi.org/.10.31643/2019/6445.30 |
Title |
Silver, gold and palladium leaching from electronic scrap using bromine- bromide solution
|
Authors |
Kogan V.S., Berkovich I.V. |
Author´s information |
Kogan Vladimir Samuilovich - Ph.D. in Chemistry, Head of the Research Department of All Recycling Ltd, Petah Tikva, Israel, ORCID ID: 0000-0002-8080-0512, E-mail: vladimir@atrecycling.com Berkovich Ilya Viktorovich - Engineer-technologist of the Research Department of All Recycling Ltd, Petah Tikva, Israel, ORCID ID: 0000-0003-3497-4017, E-mail: ilya.berkovich1977@gmail.com
|
Abstract |
This study investigated the thermodynamics and kinetics of gold and accompanying noble metals, such as silver, palladium and platinum, leached from the electronic scrap by bromine-bromide solutions. Theoretical and practical analysis of the behavior of gold in the traditional Br2 - Br- - H2O system confirmed the fact that in a neutral and slightly acidic medium, when bromine hydrolysis proceeds slightly, a bromine in bromide solution can be used to leach gold. In this case, bromine-bromide leaching compared with cyanidation is more favorable in terms of kinetics and selectivity. In particular, when brominated in a neutral medium as a result of the formation of a passivating copper monovalent copper (Cu2O) film on the surface of copper particles, copper does not go into solution, while copper forms stable soluble anionic complexes with cyanide. For the first time in order to stabilize the pH in the alkaline area the conditions for gold leaching in the presence of a phosphate buffer solution (NaH2PO4) were investigated. The effect of the pH of the leach solution, the concentration of active bromine, bromide ions and the concentration of the buffer solution on the leaching kinetics of gold was studied. It was established experimentally that a noticeable dissolution of gold begins at pH ≤ 8, and at pH 6, almost all gold passes into the solution. A sufficient concentration of active bromine under these conditions can be considered 6.6 g · dm-3 Br2 at a bromide concentration of 20 g · dm-3 NaBr. Leaching with the productive solution turnover made it possible to reduce the consumption of bromine from 89-95 to 20-32 kg Br2 per ton of scrap and raise the concentration of gold from 76 to 195 mg · dm-3. In this paper, it was first shown that silver and palladium in the system under study (pH = 5-6) begin to dissolve noticeably only at high concentrations of bromide ions. Complete dissolution of palladium is achieved with an excess of bromide ions and pH values of 1.5-2.0. Platinum turned out to be more resistant to bromine-bromide leaching because of the formation of a sparingly soluble platinum dibromide on its surface.
|
Keywords |
gold hydrometallurgy, computer scrap, thermodynamics and kinetics of noble metal dissolution with bromine, phosphate buffer solution.
|
References |
[1] Balde C., Forti V., Gray, V. et al. The Global E-waste monitor 2017, United National University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn / Geneva / Viena; (In Eng.). [2] Kogan V.S., Reichman G.O. Povedeniye metallsoderzhashchikh i nemetallicheskikh poleznykh komponentov pri fiziko-mekhanicheskoy utilizatsii i gidrometallurgicheskoy dovodke elektronnogo skrapa // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). -2015, No. 4-S. 67-74 (In Rus.); https://doi.org/10.31643/2018/166445 [3] Cieszynska A., et al. Waste Electronic and Electric Equipment (WEEE) –scrap of valuable source of precious metals // Towaroznawcze Problem Jakosci, v.4 (49) 2016- P.43-53 (In Eng.). https://doi.org/10.19202/j.cs.2016.04.04 [4] Ashiq A., Kulkarni J., Vithange M. et al. Hydrometallurgical Recovery of Metals from E-Waste // Electronic Waste Management and Treatment Technology, January 2019, P. 225-246 (In Eng.). https://doi.org/10.1016/B978-0-12-816190-6.00010-8 [5] Cui J., Zhang L. Metallurgical Recovery of Metals from Electronic Waste: A Review // Journal of Hazardous Materials. V.158. 2008. P.228-256 (In Eng.). https://doi.org/10.1016/j.jhazmat.2008.02.0 “>https://doi.org/10.1016/j.jhazmat.2008.02.0 [6] Hageluken C. Recycling of Electronic Scrap at Umicore’s Integrated Metals Smelter and Refinery // World of Metallurgy-Erzmetall V. 59 (3), 2006. P.152-161; (In Eng.). [7] Sousa et al. Bromine leaching as an alternative method for gold dissolution // Minerals Engineering 118:16-23- March 2018- P. 16-23 (In Eng.). https://doi.org/10.1016/j.mineng.2017.12.019 [8] Melashvili et al. Study of gold leaching with Bromine and bromide and influence of sulfide minerals on the reaction // COM 2014- Conference of Metallurgists Proceedings ISBN: 978-1-926872-24-7; (In Eng.). [9] Kellsall G., Welham N., Diaz M. Thermodinamics of Cl- -H2O, Br- - H2O, I-H2O, Au-Cl- - H2O, Au-BrH2O, Au-I-H2O systems at 298 K // J. Electrochemical Chem., V. 361, 1993. P.13-24; (In Eng.). [10] Ksenzenko V.I., Stasinevich D.S. Khimiya i technologiya broma, ioda I ih soideneniy. M. Khimiya. 1995. 432 S. (In Rus.); [11] Dadgar A. Extraction and Recovery of gold from concentrate by bromine process // Precious Metals’89, 1989. P. 227-240; (In Eng.). [12] Pesic B., Sergent R. Reaction mechanismof gold dissolution with bromine // Metallurgical and Materials Transactions B, Juny 1993. V.24. Iss.3.- PP.419-431; (In Eng.). [13] Pesic B., Sergent R. A rotation disk study of gold dissolution by bromine // JOM, December 1991. V.43. Iss. 12. P.35-37; (In Eng.). [14] Fleming C.A. Hydrometallurgy of Precious Metals recovery // Hydrometallurgy, 30 (1992) P.127-162; (In Eng.). [15] Cotton F., Wilkinson D. Sovremennaya neorganiczeskaya khimiya (Part 3. Chemistry of transition metals) M .: Mir, 1979. S. 457-479 (In Rus.). [16] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75. (In Eng.). https://doi.org/.10.31643/2019/6445.30 [17] Kogan V.S., Berkovich I.V. Silver, gold and palladium leaching from pre-preparedelectronic scrap using bromine-bromide solution // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). – P. 55-63 (In Eng.). https://doi.org/10.31643/2019/6445.29 |
Title |
Study of the effect of plasticizers and thermoplastics on the mechanical properties of epoxy and carbon fiber reinforced plastic (Review)
|
Authors |
Mustafa L.M., Yermakhanova A.M., Ismailov M.B., Sanin A.F.
|
Author´s information |
L.M. Mustafa – Ph.D. student, Senior Researcher of “National Centre for space research and technology” JSC, Almaty, Kazakhstan. ORCID ID: 0000-0002-9779-0007. E-mail: mustafa_Laura@mail.ru M.B.Ismailov – Doctor of Technical Sciences, Professor, Director of the Department of Space Materials Science and Instrumentation of “National Centre for space research and technology” JSC, Almaty, Kazakhstan. E-mail m.ismailov@spacers.kz A.M.Yermakhanova – Ph.D., Junior Researcher of “National Centre for space research and technology” JSC, Almaty, Kazakhstan. ORCID ID: 0000-0002-2145-5122. E-mail: a.yermakhanova@mail.ru A.F.Sanin – Doctor of Technical Sciences, Professor, Head of the Department of Aircraft Production Technologies of «Dnipro National University» named after Oles Honchar, Dnipro, Ukraine. E-mail: sanin56@mail.ru
|
Abstract |
Increasing strength of epoxide resin (ER) and carbon fiber reinforced plastic (CFRP) is an aim up-to-date for many machinery sections: space, aviation, defense, automotive, and others. The aim is achieved via numerous methods of ER and carbon fiber reinforced plastic modifications. ER modifications is carried through injection of various chemical compounds. One of efficient modifications assumes introduction of plasticizers (tricresyl phosphate, oleic acid) or thermoplastics (polysulfone, polycarbonate, polystyrene, high impact polystyrene). The article contains experimental data of various types of modifiers influence on strength of ER and CFRP available in literature. The mechanism of modifying ER and CFRP with plasticizers and thermoplastics were analyzed. The introduction of plasticizers as ER modifiers leads to a twofold improvement in impact strength. The optimal input of plasticizers in ER is 15% and depends on the completeness of solubility in the binder, a further increase in the input of plasticizer leads to a decrease in the strength of the material. Modification of thermoplastics with CFRP can lead to an improvement in compression strength by 20% and impact strength by 2 times. With the introduction of thermoplastics over 20% in CFRP, strength indicators are reduced. The acquired data is necessary to elaborate domestic technology for production of high-impact CFRP.
|
Keywords |
epoxy resin, modifiers, plasticizers, thermoplastics, heat treatment, impact strength, strength.
|
References |
[1] Fitcer E. Uglerodnye volokna i uglekompozity (Carbon fibers and carbon composites). M.:Mir, 1988. 336. (in Russ.). [2] Yermakhanova A.M., Ismailov M.B. Carbon nanoparticles influence on mechanical properties of epoxide resin and carbon composite // Review. Complex use of Mineral Resources, –Almaty, – 2016 – №4. –P. 63-73. https://doi.org/10.31643/2018/166445 [3] YUdin V.A., Ivlev V.I., Fomin N.E., Sigachev A.F. Mekhanicheskie ispytaniya ugleplastika s epoksidnoj matricej (Mechanical tests of carbon fiber with an epoxy matrix) / Materials Physics and Mechanics. 30, (2017). 53-60. (in Russ.). [4] Plastifikatory / Himicheskaya enciklopediya (Plasticizers / Chemical Encyclopedia) [Elektronnyj resurs] – URL: http://www.xumuk.ru/encyklopedia/2/3395.html (accessed date 25.08.2019). (in Russ.). [5] Termoplasty / novye himicheskie tekhnologij (Thermoplastics / New Chemical Technologies) [Elektronnyj resurs] - URL.- http://www.xumuk.ru/encyklopedia/2/3395.html (accessed date 26.08.2019). (in Russ.). [6] Alent'ev A.YU., YAblokova M.YU. Svyazuyushchie dlya polimernyh kompozicionnyh materialov (Binders for polymer composite materials) / Uchebnoe posobie dlya studentov po special'nosti «Kompozicionnye nanomaterialy». Moskva, 2010. 69. (in Russ.). [7] Trikrezilfosfat (Tricresyl phosphate). – URL: http://kurskhimprom.ru/catalog/lkm-syre/trikrezilfosfat (accessed date 26.08.2019). (in Russ.). [8] Oleinovaya kislota (Oleic acid) - URL: https://ru.wikipedia.org (accessed date 26.08.2019). (in Russ.). [9] Mostovoj A.S. Razrabotka sostavov, tekhnologii i opredelenie svojstv mikro i nanonapolnennyh epoksidnyh kompozitov funkcional'nogo naznacheniya (Development of compositions, technologies and determination of the properties of micro and nanofilled epoxy composites for functional purposes). Saratov. 2014, - 149. (in Russ.). [10] Eremeeva N.M., Nikiforov A.V. Issledovanie svojstv epoksidnyh kompozicij na osnove modificirovannyh cellyulozosoderzhashchih materialov (Study of the properties of epoxy compositions based on modified cellulose-containing materials). ZHurnal «Molodoj uchenyj», Moskva, №24.1, 2015. 20-23. (in Russ.). [11] Mostovoj A.S. Plakunova E.V. Razrabotka ognestojkih epoksidnyh kompozicij i issledovanie ih struktury i svojstv (Development of flame retardant epoxy compositions and study of their structure and properties). Perspektivnye materialy, №1, 2014, 37-43. (in Russ.). [12] Triethyl phosphate. Eastman Chemical Company Corporate Journal. GN-330D, pp 1-12. ( in Eng.) [13] Vasanthakumari R. Flame retardant fibre reinforced polyester formulation for roofing application. Asia-Pacific Conference on FRP in Structures. India, 2007, pp 637-643. ( in Eng.) [14] Mostovoj A.S. Receptura modifikaciya epoksidnyh smol s primeneniem novyh vysokoeffektivnyh plastifikatorov (Recipe modification of epoxy resins using new highly effective plasticizers). Modern high technologies. №7, 2015, 66-70. (in Russ.). [15] Zhi Wang, Jiajia Zhou. Experimental study of low cycle fatigue properties for epoxy resin with dibutyl phthalate. Archives of civil engineering. Vol. LXIV, 2018, 147-159. ( in Eng.) [16] Marahovskij K.M., Osipchik V.S. Modifikaciya epoksidnogo svyazuyushchego s povyshennymi harakteristikami dlya polucheniya kompozicionnyh materialov (High Performance Epoxy Binder Modification for Composite Materials). Uspekhi v himii i himicheskoj tekhnologii. Tom HKHX. - 2016. - №10. – 56-58. (in Russ.). [17] Sopotov R. I. Svyazuyushchie dlya kompozicionnyh materialov na osnove epoksidnogo oligomera, modificirovannogo smesyami termoplastov (Binders for composite materials based on epoxy oligomer modified with mixtures of thermoplastics). Dissertaciya na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk. - 2016. – 190. (in Russ.). [18] Nozdrina L.V., Korotkova V.I., Bejder E.YA. Termoplastichnye polimery dlya konstrukcionnyh kompozicionnyh materialov (obzor) (Thermoplastic polymers for structural composite materials (overview) / VIAM, Moskva, Iyul' 1990. (in Russ.). [19] Sopotov R.I., Gorbunova I.YU., Onuchin D.V., Kostenko V.A., Korotova A.I., Bornosuz N.V. Vliyanie modifikatorov polisul'fona i poliefirsul'fona na termomekhanicheskie svojstva epoksiaminnogo svyazuyushchego (Effect of polysulfone and polyethersulfone modifiers on thermomechanical properties of epoxyamine binder) / Uspekhi v himii i himicheskoj tekhnologii. TOM XXIX. 2015. № 10. (in Russ.). [20] McGrail P.T., Jenkins S.D. Some aspects of interlaminar toughening: reactively terminated thermoplastic particles in thermoset composites // Polymer. – 1993. 34. 677-683. ( in Eng.) [21] Seunghan Shin, Jyongsik Jang. The effect of thermoplastic coating on the mechanical properties of woven fabric carbon-epoxy composites // Journal of Materials and Science. – 2000. 35. 2047-2054. ( in Eng.) [22] Pisanova E.V., Zhandarov S.F., Yurkevich O.R. Epoxy-Polysulfone Networks as Advanced Matrices for Composite Materials // The Journal of Adhesion. – 1997. 64. 111-129. ( in Eng.) [23] Woo E.M. and Mao K.L. Interlaminar morphology effects on fracture resistance of amorphous polymer-modified epoxy/carbon fibre composites // Composites Part A: Applied Science and Manufacturing. – 1996. 27. 625–631. ( in Eng.) [24] Kuperman A.M., ZelenskijE.S., KerberM.L. Stekloplastiki na osnove matric, sovmeshchayushchih termo- i reaktoplasty (Fiberglass-based matrices combining thermo- and thermosetting plastics) // Mekhanika kompozitnyh materialov. – 1996. 32, №1. 111–117. (in Russ.). [25] Petrova G.N., Bejder E.YA., CHebotarev V.P., Lovkov S.S., Sazikov V.I. Regulirovanie svojstv polisul'fona za schet modifikacii (Regulation of polysulfone properties through modification) / VIAM, Moskva, №12. 2010. (in Russ.). [26] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75 (In Eng.). https://doi.org/.10.31643/2019/6445.30 [27] Yermakhanova A. M., Ismailov M. B. Vliyaniye uglerodnykh nanotrubok na protsess otverzhdeniya i prochnost' epoksidnoy smoly. // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. – 2018. – №4. – P. 105-114 (In Eng.). https://doi.org/10.31643/2018/6445.36
|
Title |
Iron sulphates production being polarized by the direct and alternating currents
|
Authors |
Bayeshova A. K., Bayeshov A., Zhumabay F. M., Shakenova M. Sh.
|
Author´s information |
Bayeshova Azhar Kospanovna - professor, Doctor of Technical Sciences, Al-Farabi Kazakh National University, Almaty, the Republic of Kazakhstan. ORCID ID: 0000-0002-9076-8130, E-mail: azhar_b@bk.ru Bayeshov Abduali - Academician of the Academy of Science of the Republic of Kazakhstan, Doctor of chemical science, Professor. “D.V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry” JSC, Almaty, the Republic of Kazakhstan. ORCID ID: 0000-0003-0745-039X, E-mail: bayeshov@mail.ru Zhumabay Fatima Mukhambetzhankyzy – PhD student, Al-Farabi Kazakh National University, Almaty, the Republic of Kazakhstan., ORCID ID: 0000-0002-8914-9375, E-mail: zhumabay_fati@mail.ru Shakenova Madina Shalkarovna - Master student at Al-Farabi Kazakh National University, Almaty, the Republic of Kazakhstan. ORCIDID:0000-0002-0164-6239, E-mail: ahmadiyeva@gmail.com
|
Abstract |
The process of iron oxidation in the sulfate electrolytes was studied by the method of electrochemical polarization by the steady and transient currents. Initially, in the first electrolyzer, the iron electrodes were oxidized under the influence of alternating current. The results of iron oxidation in the first electrolyzer were monitored by determining the weight loss of the iron electrodes. An almost rectilinear increase in the mass of iron is established to be observed, which passed into the solution in the form of Fe2+ ions when the current density changes in the range of 80-400 A / m2. The current efficiency is close to 100%, and sometimes exceeds 100%, since the chemical dissolution of iron in sulfuric acid also occurs simultaneously. The iron sulfate (II) can be obtained by evaporation of the solution. After that, the sulfate solution containing iron ions (II) was sent to the second electrolyzer, in which the oxidation of iron (II) to iron (III) was carried out under the direct current. The electrode spaces were separated by an MA-40 anion exchange membrane. Over 90% of iron (II) was demonstrated to be transfers into the trivalent state within 1 hour in the second electrolyzer at a current density of 120 A / m2. A change in the current density to 600 A / m2 leads to an increase in the oxidation state to 97.5%, i.e. iron ions (II) are almost completely oxidized under the specified conditions. As a result of the experiments, an electrochemical method for producing iron sulfate (III) was developed.
|
Keywords |
iron, electrolyte, sulfate, electrolysis, alternating current.
|
References |
[1] Bukhtiyarova G.A., Mart'yanov O.N., Yakushkin S.S., Shuvayeva M.A., Bayukov O.A. Sostoyanie zheleza v nanochastitsakh, poluchennykh metodom propitki silikagelya i oksida alyuminiya rastvorom FeSO4 // Fizika tverdogo tela, 2010. T.52. – Vyp. 4. – S.771-781. (in Russ.). [2] Kuzubova L .I., Morozov S. V. Ochistka nefte soderzhashchikh stochnykh vod // Analiticheskiy obzor / SORAN. GPNTB, NIOKH. Novosibirsk, 1992. 72 (in Russ.) [3] Mamchenko A. V., Deshko I. I. Pustovit V. M., Yakimova T. I. Primeneni ekoagulyantov, soderzhashchikh zhelezo, v protsessakh ochistki pri rodnykh I stochnykh vod // Khimiyai tekhnologiya vody. 2006. № 4. T.28. 342-355, (in Russ.). [4] Filatova Ye. G. Obzor tekhnologii ochistki stochnykh vod ot ionov tyazhelykh metallov, osnovannykh na fizikokhimicheskikh protsessakh // Izvestiya vuzov. Prikladnaya khimiya I biotekhnologiya. 2015. № 2(13). 97-109 (in Russ.) [5] Troshin A. N., Nechayeva A. V. Preparatyzheleza v meditsineiveterinariivchera, segodnyaizavtra // Nauchnyyzhurnal Kub GAU. № 28(4) aprel' 2007. 1-10. (inRuss.) [6] Ulmans Encyclopedia of Industrial Chemistry 6th ed., 2002, Wildermuth E. Iron Compounds for the Treatment of Anemia. (in Eng.) [7] Pozin M. Ye. Tekhnologiya mineral'nykh soley (udobreniy, pestitsidov, promyshlennykhsoley, okislov I kislot, chast' I, izdaniye 3, pererabotannoye I dopolnennoyepri uchastii L. Z. Arsen'yevoy, Yu. Ya. Kaganovich, G. S. Klebanovaidr. / Izd-vo «Khimiya». Leningradskoye otdeleniye. 1970. 792 (in Russ.). [8] Balpanov D. S., Ten O. A., Zhappar N. K., Shaykhutdinov V. M., Khannanov R. A. Biotekhnologicheskie metody regeneratsii trekhvalentnogo zheleza I sorbtsii redkikh I redkozemel'nykh metallov iztsirkuliruyushchikh rastvorov podzemno-skvazhinnoy dobychi urana // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). 2017. № 4. 21-26 (in Russ.). https://doi.org/10.31643/2018/166445 [9] Kenzhaliyev B. K., Berkinbayeva A. N., Losymbayeva Z. D., Sharipov R. Ch., Chukmanova M. T. Extraction of uranium from uranium-containing raw materials // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). 2016. № 3. 29- 34 (in Eng.). .). https://doi.org/10.31643/2018/166445 [10] KaryakinYu. V.,Angelov I. I. Chistyye khimicheskiye veshchestva, M. Khimiya, 1974. 104 -105 (in Russ.). [11] Borisenkova S. A., Poziy V. S., DenisovaYe. P.,Kaliya O. L., Luk'yanets Ye. A., Belov M. V., Derkacheva V. M. I Ivanova V. A. Sposo bpolucheniya sul'fat atrekhvalentnogo zheleza // A.S.SSSR № 1604743. Opubl. 07.11.1990. Byul.№ 41 (inRuss.). [12] Smolyag N. L., Zharskiy I. N., Martinovich V. L .i Kaputskiy Yu. N. Sposo bpolucheniya sernokislogo okisnogo zheleza// A.S.SSSR № 11555393. – Opubl. 07.04.1990. Byul.№ 13 (in Russ.). [13] Bayeshov A., Bayeshova A.K. Elektro khimicheskiye sposoby polucheniyane organicheskikh veshchestv. Lambert Academic Publising. 2012. 72 (in Russ.). [14] Bayeshov A. Elektrokhimicheskiye protsessy pri polyarizatsii nestatsionarnymi tokami. Natsional'nyy doklad po nauke «O sostoyanii i tendentsiyakh razvitiya mirovoi i otechestvennoy nauki» // Izvestiya NAN RK (seriya khimi I itekhnologii). 2011. № 2. 3-23 (inRuss.). [15] Stepin V. V., SilayevaYe. V., Kurbatova V. I., Khanova T. F., Barbash T. L., Ponosov V. I. Anali ztsvetnykh metallov I splavov - Moskva: Metallurgiya, 1965. 188 (in Russ.). [16] Bayeshov A., Bayeshova A.K., Zhұmabay F.M., Shakenova M.SH. Sposob polucheniya sul'fata trekhvalentnogo zheleza // Patent RK № 4329 na poleznuyu model' (poluchen 27.09.2019 po zayavke № 2019/0254.2 ot 18.03.2019), (in Russ.). [17] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75. (In Eng.). .). https://doi.org/.10.31643/2019/6445.30 [18] Bayeshov А. B., Makhanbetov А. B. Direct reduction of selenite-ionsfrom a hydrochloric acid solution of copper (II) chloride with selenium powder formationon // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). – P. 27-33 (In Eng.). .). https://doi.org/10.31643/2019/6445.25
|
Title |
Study of the influence of fine fillers from technogenic waste and chemical additives on the properties of self-compacting concrete
|
Authors |
Yelbek Utepov, Daniyar Akhmetov, Ilnur Akhmatshaeva, Yelena Root
|
Author´s information |
Utepov Ye. - Ph.D., L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan. ORCID ID: 0000-0001-6723-175X. E-mail: utepov-elbek@mail.ru Akhmetov D. - Doctor of Technical Sciences, NIISTROMPROJECT LLP, Almaty, Kazakhstan, ORCID ID: 0000-0003-0978-6452. E-mail: dan-akhmetov@yandex.kz Akhmatshaeva I. - Master of Engineering, NIISTROMPROJECT LLP, Almaty, Kazakhstan, ORCID ID: 0000-0002-3580-029X. E-mail: ilnura_elya@mail.ru Root Y. - Master of Engineering, NIISTROMPROJECT LLP, Almaty, Kazakhstan, ORCID ID: 0000-0001-8690-3806. E-mail: project_manager@niistrom.kz
|
Abstract |
The article is devoted to the researches considering the influence of various chemical additives and fine fillers (industrial wastes) available in the Republic of Kazakhstan on concrete mixes and concrete rheological and physical-technical properties. The article provides laboratory studies results of some of self-compacting concrete (SCC) mixtures properties. There were identified the most efficient type of fine-dispersed filler and the most optimal type of chemical additive to be able to get a high-quality SCC mix and a concrete with the class of B25 based on local raw materials. There were enlisted compositions of SCC with a high strength in early terms. The research results are of practical value in the forms of economic efficiency and quality improvement in the production of SCC mixes for manufacturers of ready-mixed concrete operating in the Republic of Kazakhstan. |
Keywords |
workability, conservability, concrete strength, chemical additives, self-compacting concrete, fine aggregate.
|
References |
[1] Ofitsial'nyy sayt Prezidenta Respubliki Kazakhstan - [Electronic resource] Access mode: http://www.akorda.kz/ru/official_documents/strategies_and_programs (In Rus.) [2] Akhmetov D. A., Root E. N. Opyt primeneniya samouplotnyayushchikhsya betonov v stroitel'noy industrii Respubliki Kazakhstan/ «Molodoy uchennyy»- 2017. - No. 48. S. 11. (In Rus.) [3] Zhurnal o stroitel'noy otrasli Ural'skogo regiona «StroyEkspert» // [Elektronnyy resurs] Rezhim dostupa: http://expert74.com/nomer.php?art=330 (In Rus.) [4] Amin Abrishambaf, Joaquim A. O. Barros, Vitor M.C.F. Cunha Time-dependent flexural behaviour of cracked steel fibre reinforced self-compacting concrete panels - Cement And Concrete Research – 2015. –V. 72. 21-36 с. https://doi.org/10.1016/j.cemconres.2015.02.010 (In Eng.) [5] Cristina Frazão, Joaquim Barros a, Aires Camões, Alexandra C. Alves, Luís Rocha. Corrosion effects on pullout behavior of hooked steel fibers in self-compacting concrete - Cement And Concrete Research – 2016. – V. 79. 112-122 s. https://doi.org/10.1016/j.cemconres.2015.09.005 (In Eng.) [6] M.C.Bignozzi, F.Sandrolini. Tyre rubber waste recycling in self-compacting concrete - Cement And Concrete Research – 2006 – V. 36. 735-739 с. https://doi.org/10.1016/j.cemconres.2005.12.011 (In Eng.) [7] Matveyev D. V., Ivanov I. M., Chernykh T. I., Kramar L. YA. Razrabotka sostavov i issledovaniye svoystv samouplotnyayushchikhsya betonov na ryadovykh materialakh Chelyabinskoy oblasti [Elektronnyy resurs] / D. V. Matveyev // 04.10.2018 (In Eng.) [8] Kalashnikov V.I. Raschet sostavov vysokoprochnykh samouplotnyayushchikhsya betonov / V.I. Kalashnikov // Stroitel'nyye materialy. – 2008. - № 10. – S. 4-6.(In Eng.) [9] GOST 10178-85. «Portlandtsement i shlakoportlandtsement. Tekhnicheskiye usloviya». – Moskva: Standartinform, 2008. – 8 s. (In Eng.) [10] GOST 8736-2014 «Pesok dlya stroitel'nykh rabot. Tekhnicheskiye usloviya» – Moskva: IPK Izdatel'stvo standartov, 2015. (In Eng.) [11] Root Ye. N., Nurpeisov S. K. Vliyaniye fiziko-tekhnicheskikh kharakteristik melkogo zapolnitelya na svoystva samouplotnyayushchikhsya betonov/ Vestnik Kazakhskoy golovnoy arkhitekturno-stroitel'noy akademii. – 2017. - №3(65). – S. 168-172. (In Eng.) [12] GOST 8735-88 “Sand for construction work. Test Methods ”- Moscow: IPK Standards Publishing House, 2018. (In Eng.) [13] GOST 8267-93. «Shcheben' i graviy iz plotnykh gornykh porod dlya stroitel'nykh rabot. Tekhnicheskiye usloviya». – Moskva: Standartinfom, 2014. – 12 s. (In Eng.) [14] GOST 24211-2008 «Dobavki dlya betonov i stroitel'nykh rastvorov. Obshchiye tekhnicheskiye usloviya» – Moskva: Standartinfom, 2010. – 12 s (In Eng.) [15] GOST 30459-2008 «Dobavki dlya betonov i stroitel'nykh rastvorov. Opredeleniye i otsenka effektivnosti» – Moskva: Standartinfom, 2010. – 12 s (In Eng.) [16] GOST 10181-2014 «Smesi betonnyye. Metody ispytaniy» - AO "NITS "Stroitel'stvo", 2015. (In Rus.). [17] Akhmetov D. A., Utepov Ye. B., Pak V. Ye. Issledovaniye vliyaniya melkodispersnykh napolniteleyiz tekhnogennykh otkhodov na udoboukladyvayemost' samouplotnyayushchikhsya betonov (SUB)/ «Vestnik KazNIISA» - 2018. - №10. S. (In Eng.) [18] EFNARC: Specification and Guidelines for Self-Compacting Concrete. Farnham, February 2002. (In Eng.) [19] Brabha Hari Nagaratnam, Muhammad Abdul Mannan, Muhammad Ekhlasur Rahman, Abdul Karim Mirasa, Alan Richardson, Omid Nabinejad. Strength and microstructural characteristics of palm oil fuel ash and fly ash as binary and ternary blends in Self-Compacting concrete - Construction and Building Materials – 2019 – V. 202. 103-120 s. https://doi.org/10.1016/j.conbuildmat.2018.12.139 (In Eng.) [20] Wenzhong Zhu, John C.Gibbs. Use of different limestone and chalk powders in self-compacting concrete - Cement and Concrete Research, 2005 – V. 35. 1457-1462 s. https://doi.org/10.1016/j.cemconres.2004.07.001 (In Eng.). [21] SNiP 3.03-01-87. «Nesushchiye i ograzhdayushchiye konstruktsii». – Moskva: /Gosstroy Rossii — MFGUP TSPP, 2007 – 17 s. (In Rus.) [22] Domokeyev A. G. Stroitel'nyye materialy. – Moskva: «Izdatel'stvo «Vysshaya shkola», 1989. – 205 s. [23] Zhunusov T. ZH. Terminologicheskiy russko-anglo-kazakhskiy slovar' dlya stroitel'no-arkhitekturnykh spetsial'nostey (In Rus.). [24] Yu R, Spiesz, P, Brouwers, H.J.H / Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount//Construction and Building Materials – 2014 –Том 65. 140-150 s. https://doi.org/10.1016/j.conbuildmat.2014.04.063 (In Eng.). [25] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75. https://doi.org/.10.31643/2019/6445.30 (In Eng.) [26] Patent No. 3764. Composition for the preparation of self-compacting concrete - V. Yu. Zorin, D. A. Akhmetov, E. N. Root, E. B. Utepov; publ. 03/15/2019, Bull. Number 11. (In Eng.)
|
Title |
Calcium nitrate generating out of nitrogen-acid solutions after breaking up slurries of titanium production |
Authors |
Yessengaziyev A. M., Ultarakova A. A., Uldakhanov O. H. |
Author´s information |
Yessengaziyev Azamat Muratovich, PhD student, junior scientific employeer. “IMOB” JSC. ORCID ID: 0000-0002-4989-4119. E-mail: esengazyev@yandex.ru Ultarakova Almagul Amirovna, Candidate of Technical Sciences, Leading Researcher, “IMOB” JSC. ORCID ID: 0000-0001-9428-8508. E-mail ult.alma@mail.ru Uldhanov Orken Khamituly, Master student, engineer. “IMOB” JSC. ORCID ID: 0000-0001-5476-6560. E-mail: uldahan.orken@mail.ru
|
Abstract |
This article provides the results of studies of qualitative, quantitative and material composition of titanium production slurry, which is man-made waste. The leaching of slurry parameters by nitric acid are studied: concentration, solid to liquid ratio, temperature and time. The effective leaching parameters were determined: 1.7 mol/l of nitric acid concentration, solid to liquid ratio = 1:8, pH<1, temperature 20±5 ºС, leaching time is 30 minutes. The rate of filtration was 0.035-0.044 m3/ m2×h. A gradual leaching method was used to improve the solutions filtration. At the beginning, the slurry was leached with a 0.5 mol/l HNO3 solution at room temperature for 10 min at solid to liquid ratio = 1:10, the filtration rate was 0.062 m3/ m2×h. Then the cake was again leached with 3.5 mol / l HNO3 at room temperature for 30 min at solid to liquid ratio = 1:10, the filtration rate was 0.094 m3/ m2×h. Calcium hydroxide or lime milk was selected as the reagent to precipitate impurities out of solutions. The content of impurities of iron, titanium and aluminum is significantly reduced when 2.8-5 pH values. The best purification of calcium nitrate solutions by lime milk was at pH 8. Calcium nitrate crystals were obtained by evaporation of a purified solution of 8 pH value out of a slurry leaching when 5% ammonium nitrate was added to it by weight of Ca(NO3)2. The dehydrated calcium nitrate was obtained by granulating 92-95% of the melt in the form of flakes at 90 °C of a surface temperature of the granulator plate. |
Keywords |
leaching, chloride waste, nitric acid, filtration, precipitation, calcium nitrate, crystallization, granulation. |
References |
[1] Tarasov A.V. Metallurgiya titana. M.: IKTs «Akademkniga» 2003.-328 s. (in Russ). [2] Teploukhov A.S. Predotvrashcheniye zagryazneniya vodnykh obyektov otkhodami titano-magniyevogo proizvodstva. Avtoreferat diss. kand. tekhn. nauk. 2005. 143 s. (in Russ). [3] Ultarakova A.A., Naymanbayev M.A., Onayev M.I., Ulasyuk S.M., Alzhanbayeva N.Sh. Issledovaniya po ochistke rastvorov. prigodnykh dlya sinteza karnallita. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. Almaty. 2013. №2. S. 43-53. (in Russ). www.kims-imio.kz [4] Ultarakova A.A., Naymanbayev M.A., Onayev M.I., Khalelov A.M., Ulasyuk S.M. Puti polucheniya sinteticheskogo karnallita iz otkhodov titano-magniyevogo proizvodstva. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. Almaty. 2012. №3. S. 52-58. (in Russ). www.kims-imio.kz [5] Ultarakova A.A., Lokhova N.G., Naymanbayev M.A., Baltabekova Zh.A., Alzhanbayeva N.Sh. Razrabotka kompleksnoy tekhnologii pererabotki otkhodov titanomagniyevogo proizvodstva. Materialy shestoy mezhd. nauch.-praktich. konf. ««GEOTEKhNOLOGIYa-2013: Problemy i puti innovatsionnogo razvitiya gornodobyvayushchey promyshlennosti. Institut gornogo dela im. D.A. Kunayeva. Almaty. 2013. S. 351-355. (in Russ). [6] Innovatsionnyy patent RK № 27912. Sposob pererabotki vozgonov titanovykh khloratorov. Ultarakova A.A. Naymanbayev M.A., Onayev M.I., Ulasyuk S.M., Khalelov A.M., Alzhanbayeva N.Sh. Opubl.25.12.2013. byul. №12. S. 22. (in Russ). [7] Innovatsionnyy patent RK № 22784 Sposob izvlecheniya niobiya iz otkhodov titanovogo proizvodstva. Naymanbayev M.A., Pavlov A.V., Onayev M.I., Zhenisov B.Zh., Khalelov A.M. Opubl. 16.08.2010. byul. №8. [8] Ultarakova A.A., Naymanbaev M.A., Onayev M.I., Alzhanbayeva N.Sh. Processing of chloride waste of titanium-magnesium production. XV Balkan Mineral Processing Conress. – Sozopol. Bulgaria. June 12-16. – 2013. –P.1002-1004. (in Eng). [9] Pat. 2244035 RF. Sposob kislotnogo razlozheniya silikata kaltsiya i izvlecheniya tsirkoniya / Sinegribov V.A., Yudina T.B.; opubl. 10.01.2005. Byul. №1. (in Russ). [10] Khamskiy E.V. kristallizatsiya v khimicheskoy promyshlennosti. -M.: Khimiya. 1969. -344s. (in Russ). [11] Klevke V.A., Polyakov N.N., Arsenyeva L.Z. Tekhnologiya azotnykh udobreniy. M.: 1956. -289 s. (in Russ). |
Title |
Development of energy-efficient method for processing industrial waste |
Authors |
Dikhanbayev B. I., Dikhanbayev A.B. |
Author´s information |
Dikhanbaev Bayandy – professor, Doctor of Technical Sciences,Kazakh Agrotechnical University named after S. Seifullin, Nur-Sultan, Republic of Kazakhstan. E-mail: otrar_kz@mail.ru Dikhanbaev Arystan Bayandyevich – senior teacher, Almaty University of Energetics and Communication. E-mail: arystan.d74@gmail.com |
Abstract |
An energy-saving method for processing technogenic waste has been developed — a smelt layer with inversion phase as a combination of “ideal” mixing and “ideal” displacement regimes. On its basis, a new generation of melting unit was created - the “reactor inversion phase - rotary kiln”. Experimental data show that in the inversion phase layer the specific fuel consumption for processing the “poor” on zinc and “rich” on zinc slags is approximately the same. The latter provision contradicts the prevailing opinion of metallurgists that the processing of slag with a zinc concentration of less than 5% is unprofitable. Сalculation results demonstrate that in case of implementation of an industrial sample of “reactor inversion phase - rotary kiln for processing “poor” slag, compared to the Waelz kiln processing “rich” slag, the specific consumption of fuel will be reduced by 1.5-1.7 times and specific productivity will increase 1.4-1.5 times. The industrial realization of “reactor inversion phase -rotary kiln” would allow cost-effective processing of fuming slag dumps, Waelz clinker, “poor” zinc ores, enrichment tails and other non-ferrous metal wastes. |
Keywords |
energy-saving method, phase inversion reactor — tube furnace, “zinc-poor” slags, a combination of “ideal” mixing and displacement modes. |
References |
[1] K. Bolatbaev. Status, problems and reserves of technology for enrichment of polymetallic raw materials. // Industry of Kazakhstan. - 2001. - No. 1 (8) - P.91-93. [2] DaukeevS.Zh. Mineral resources of Kazakhstan - the possibilities of scientific and technological development // Issues of complex processing of raw materials in Kazakhstan:Proceedingsof First International Conf. - Almaty, Kazakhstan, 2003. - P.11 (457p.). [3] R. Hansson, H. Holmgren and T. Lehner “Recovery of recycled zinc by slag fuming at the Rönnskär smelter”, Journal of Metallurgy, 2009, - pp.15-24. [4] Klyuchnikov A.D. High-temperature heat technology and energy technology. - M .: Energy, 2008, - 333p. [5] Koshumbaev M. B. Recycling of industrial and household waste. Tutorial. –Astana: Publ. KazATU, - 2018. 230p. [6] A.K. Koizhanova, L.L. Osipovskaya, M.B. Erdenova, Study of precious metals extraction recovery fromtechnogenic wastes. 12th International Multidisciplinary Scientific Geo Conference DSGEM2012, June,Vol. 1, pp. 843-846, 2012. https://doi.org/10.5593/sgem2012/s03.v1059 [7] Petrov G. V., Diakite M. L. L., Kovalev V. N., Extraction of precious metals by concentration from technogenicsulfide copper-nickel raw material. Metallurgist, Volume 56, Issue 34, pp. 211-214, July 2012. https://doi.org/10.1007/s11015-012-9560-5 [8] V. N. Kovalev, G. V. Petrov, and A. A. Chernyshev, Sulfatization refining of sulfide products of processingtechnogenic platinum metal wastes. Non-Ferrous Metals of Siberia. - 2009: Proc. 1st Int. Conf.,Krasnoyarsk, -pp. 585-586, - 2009. [9] Kovalev V. N., Contemporary technology for concentrating platinum metals from technogenic wastesof processing sulfide copper-nickel ores. Zap. Gorn. Inst., St. Petersburg, No. 6, 284-287, 2011. [10] Chanturiya V. A. Shadrunova I. V., Orekhova N. N., Chalkova N. L., Technology of zinc recovery frommine and waste dump water. ObogashchenieRud (Mineral processing), No 01, 2011. [11] N.I. Kassikova, A.G. Kassikov, Yu.I. Balabanov, V.B. Petrov, V.T. Kalinnikov, Niobium, tantalum andtitanium extraction from Natural and technogenic raw materials of the Kola Peninsula by liquid-liquidextraction methods. Proceedings of 3rd BMC-2003-Ohrid, Macedonia, 2003. [12] Kenzhaliev B.B., Berkinbayeva A.N. and Suleimenov E.N., Use of conjoint reactions for extraction ofmetals from mineral raw materials. European Scientific Journal, Vol.10, No.6, February 2014. [13] M.Borell, Slag±AResourse in the Sustainable Society, Securing the future±InternationalConferenceon Mining and the Environment, Metals and Energy Recovery, Skellefteå, Sweden, pp.130-138, 2005. [14] K. Badyda, P. Krawczyk, and K. Pikoń. Relative environmental footprint of waste-based fuel burned in a power boiler in the context of end-of-waste criteria assigned to the fuel, Energy, 100:425–430, 2016. https://doi.org/10.1016/j.energy.2016.02.024 [15] A. Grzebielec, A. Rusowicz, and A. Szel ˛agowski. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency, Open Engineering, 7(1):106–114, 2017. https://doi.org/10.1515/eng-2017-0015 [16] A.D. Klyuchnikov. Method of extreme energy saving as methodological basis for formation of energy-material saving and ecologically perfect heat technological systems, Set of scientific works, Moscow, Energy Institute, 105:3–7, 1986. [17] Dikhanbaev B. Dikhanbaev A. B. The method of solving the problems of resource and energy saving in the processing system of lead-zinc raw materials // Industry of Kazakhstan. –Almaty, 2011.6 (69). –P.74-77. [18] Dikhanbaev B., Dikhanbaev A, B. Calculation of the parameters of the boiling bed of the melt for fuming of lead slag // Transactions of the International Scientific and Practical Conference "Perspective Directions of the Development of Chemistry and Chemical Technology". –Shymkent, 1999. –v.2. –P.134-136. [19] A.D. Klyutchnikov, V.A. Ippolitov On the method of calculating heat exchange under conditions of highly forced blow-through across the molten Publ. of Moscow Energy Institute. 2005, issue 394, p. 63-67. [20] .Dikhanbayev B., Dikhanbayev A., Baubekov K., Calculated estimation of fuel consumption on processingplant of zinc-containing slag based on reactor of phase inversion. Eurasian Multidisciplinary Forum,Tbilisi, pp.124-133, 2013. [21] Dikhanbaev B.I., Dikhanbaev A.B., IbrayS ,Rusowicz A. Development of hydrogen-enriched water gas production technology by processing ekibastuz coal with technogenic waste //Archive of mechanical engineering. –2018. – V. LXV, – N 2. doi: 10.24425/123022, http://journals.pan.pl/dlibra/journal/97806 [22] A.I. Okunev, I.A. Kostyanovsky, P.A. Donchenko. Fumigation of slag. (Theory and practice) .- Moscow. Ed. Metallurgy, - 1966. P.250. - (259p). [23] Outokumpu HSC Chemistry for Windows. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Version 5.1. October 31, 2002. [24] B. Dikhanbaev. Intensive resource and energy saving in the processing of mineral raw materials (Creation and testing of a pilot plant for energy-efficient processing of metallurgical slag). - Astana. Ed. KazATU, - 2018 .- 165p. |