Substantiation of the specific energy intensity of drilling as a criterion characterizing the explosive destruction of rocks on the example of the Koktaszhal deposit

Ozhigin S.G. 1, Chunuev I.K. 2, Musin R.A. 1, Tyvan S.G. 1*

1 Karaganda Technical University, Karaganda, Kazakhstan
2 Kyrgyz State University of Geology, Mining and Natural Resources Development named after Academician U.A. Asanaliev, Kyrgyzstan.

* Corresponding author email: info@geo-in.kz

ABSTRACT
Drilling and blasting operations are one of the most important components of the mining industry. Currently, further improvement and optimization of technological processes at mining enterprises are possible mainly due to the determination and constant monitoring of the mining and technological properties of the rock mass – their drillability, explosivity and exaviability. A prospective assessment of the explosivity of rocks in the massif, which is the basis for designing and calculating the parameters of the DBO, is currently possible only using the energy parameters of technological work. The article provides information on methods for studying the strength and elastic characteristics of rocks in natural occurrence. The results of the study of the relationship between the specific energy intensity of drilling and explosive destruction of rocks are presented. The correlation between the specific energy intensity of drilling and the propagation velocity of elastic longitudinal waves is also considered. A comparative analysis is carried out between the traditional calculation of the explosive index using the results of laboratory studies on the physical and mechanical properties of the rocks of the Koktaszhal deposit and the calculation of the explosive destruction index taking into account the energy parameters of drilling. The validity of the use of the specific energy intensity of drilling as a criterion characterizing the explosive destruction of rocks in the design of drilling and blasting operations is shown.

Keywords: Drillability, energy intensity of drilling, explosiveness, rock strength.

Information about authors:

Ozhigin Sergey Georgievich
Doctor of Technical Sciences, Professor. Karaganda Technical University, Karaganda, Kazakhstan. ORCID ID: 0000-0003-2432-3851. Email: osg62@mail.ru

Chunuev Ishimbay Karybayevich
Doctor of Technical Sciences, Professor. Kyrgyz State University of Geology, Mining and Natural Resources Development named after Academician U.A. Asanaliev, Bishkek, Kyrgyzstan. Email: ichunuev@gmail.com

Musin Ravil Altavovich
PhD, senior lecturer. Karaganda Technical University, Karaganda, Kazakhstan. ORCID ID: 0000-0002-1206-6889. Email: r.a.mussin@mail.ru

Tyvan Stanislav Georgievich
Doctoral student, Karaganda Technical University, Karaganda, Kazakhstan. ORCID ID: 0000-0002-3566-1437. Email: info@geo-in.kz

Introduction

Drilling and blasting operations are one of the most important components of the mining industry. Every year, the volume of exploding rocks is only growing, which increases the demand for technologies that accelerate the design process and calculate the efficiency of the work performed. Currently, further improvement and optimization of technological processes at mining enterprises are possible mainly due to the determination and constant monitoring of the mining and technological properties of the rock mass – their drillability, explosivity and exaviability. A prospective assessment of the explosivity of rocks in the massif, which is the basis for designing and calculating the parameters of the DBO, is currently possible only using the energy parameters of technological work.

According to morphostructural features, physical and geographical conditions and technical and economic parameters, the Koktaszhal copper-porphry deposit is planned to be worked out in an open-pit manner with a depth of 300 m.
As shown in [1], the surface of the industrial areas of the Koktaszhal mining and Processing Plant is represented by a rocky base covered in areas with covers with low power within 10-30 cm of delvial-proluvial deposits. The rocks are represented by strong silica tuffs, plagiogranitic porphyry and porphyry, silicic acid-invasive rocks, monochrome and quartz-shimmering chlorite rocks.

Components included in the mineral composition:
1. Quartz 43-45%,
2. Sour plagioclase 31 - 33 %,
3. Chloride 9 - 11 %,
4. Hydrosluda 8-10 %,
5. Dolomite 2 – 3 %.

Zones of tectonic disturbances are mostly filled with differently oriented quartz veins, which has a positive effect on the stability of rocks. Ores and host rocks of the deposit have the same strength properties due to the fact that mineralization has no pronounced boundaries and the mineral grains of the rocks have a dense structural-crystallization relationship between them. Groundwater within the mountain drainage in the weathering crust does not spread. In rock formations they are deep enough (10 - 30 m) and do not affect the change of engineering and geological properties of rocks. That is why the category of complexity of engineering and geological criteria for the development of the Koktaszhal site, according to the "Methodological guidelines for the study of mining and geological conditions of deposits of solid minerals" belongs to the simple. The contract area is characterized by strong differences. Ores and rocks are not sensitive to spontaneous combustion and swelling, are not radioactive [1].

The experimental part

For blasting a rock mass under ideal conditions, the main physical and mechanical characteristics of rocks are: strength (σ_σ, σ_{ρσ}, σ_{ρρ}), strength coefficient - f, elastic wave velocity - V_p, density - γ. Tests on the strength and elastic properties of rocks were carried out on the cores of six geotechnical wells drilled along the contour of the quarry to its design depth.

The determination of the tensile strength under uniaxial compression was carried out according to Gost 21153.2 -84.

Figure 1 shows the essence of the main method for determining the maximum destructive force (P_σ), which is applied to the ends of the sample of the correct shape through steel flat plates.

![Figure 1 - Testing of rocks for tensile strength under uniaxial compression on a press](image)

The compressive strength of the rock (σ_{ρσ}) for each test sample was calculated by the formula:

\[
\sigma_{ρσ} = k_v \cdot \frac{P_{σ}}{F_0} \cdot 10,
\]

where - P_σ is the total maximum load on the sample at the time of its destruction, kN;
F₀=(π/4)*d² - initial cross-sectional area of the sample, cm²;
d – sample diameter, cm;
k_v – the dimensionless height coefficient of the sample, equal to 1.00 with the ratio of height to diameter m = 2 ± 0.5. For other values of the ratio m, the coefficient k_v was set according to Table 1.

<table>
<thead>
<tr>
<th>m</th>
<th>0.7</th>
<th>0.80</th>
<th>0.90</th>
<th>1.00</th>
<th>1.20</th>
<th>1.40</th>
<th>1.60</th>
<th>1.80</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>k<sub>v</sub></td>
<td>0.68</td>
<td>0.72</td>
<td>0.76</td>
<td>0.80</td>
<td>0.86</td>
<td>0.90</td>
<td>0.94</td>
<td>0.97</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Determination of the rock strength limit under uniaxial tension was carried out according to GOST 21153.3 – 85.

Figure 2 shows the essence of the method, which consists in determining the maximum destructive force (P_{ρρ}) applied perpendicular to the generatrix of a cylindrical rock sample, as a result of which tensile stresses arise in the sample, leading to its destruction in the plane of the longitudinal section.

![Figure 2 - Testing of rocks for tensile strength under uniaxial tension](image)
The tensile strength of the rock (σ_p) was calculated by the formula:

\[\sigma_p = \frac{P_{pac}}{d \cdot h} \cdot 10 \]

(2)

where \(P_{pac} \) is the maximum load on the sample at which the sample ruptured, kN;
\(d \) - is the diameter of the sample, cm;
\(h \) - is the height of the sample.

The coefficient of rock strength on the scale of M.M. Protodyakonov and is determined on pieces of rock with a size of 20-40 mm in the POK device by dropping weights weighing 2.5 kg from a height of 60 cm. The number of drops varies from 5 to 15. After crushing, the material is sieved through a 0.5 mm sieve and the volume of the crushed material is measured in a volume meter.

\[f = \frac{20 \times n}{h} \]

(3)

where \(n \) – the number of kettlebell drops during the test of one hitch;
\(h \) – the height of the column of the fine fraction (after sieving on a sieve of 0.5 mm) in the volume meter after testing five attachments, mm;

20 - an empirical numerical coefficient that provides the generally accepted values of the strength coefficient and takes into account the work spent on crushing [2].

In preparation for measurements of elastic parameters of rocks, the end surfaces of the core were carefully sanded, their length strictly corresponded to 100 mm, diameter 48 mm, the ratio \(l/d \geq 2 \) was observed, where \(d \) - is the diameter of the sample.

For laboratory studies of the propagation velocity of longitudinal and transverse waves, the measurement equipment and methods described in the literature [4], [5], [6] were used. A MATRIX Corp. high-frequency generator was used as instruments. MFG-8216 and digital storage oscilloscope (DSO) from ACUTE Tecn. DS 1002. Piezoelectric converters PRIZ-12 [3], (Figure 3) are used as converters.

«The main measurement parameter in determining the elastic properties of rocks is the acoustic delay time \(\Delta t \) of the front of the first half-period of the received signal pulse, which, at a constant value of the rock sample \(L = 100 \text{mm} \), allows us to determine the propagation velocity of the longitudinal wave \(V_p = L/ \Delta t \). To determine the velocity of propagation of a transverse wave, a signal reception sensor (piezoelectric transducer - emitting or receiving) was located on the sample at an angle

\[90^\circ V_s = \frac{L(90^\circ)}{\Delta t}, \]

(4)

where \(L (90) \) - is the length of the sample, taking into account the displacement of sensors on the sample surface.

Figure 4 shows a block diagram of the measurement of elastic parameters by the pulse method».

![Figure 3 - Ultrasound examination method](image)

![Figure 4 - Block diagram of elastic parameters measurement by pulse method](image)
Table 2 - Strength properties of rocks along the horizons

<table>
<thead>
<tr>
<th>Horizon, m</th>
<th>from</th>
<th>to</th>
<th>(\gamma, \text{g/cm}^3)</th>
<th>Ultimate strength</th>
<th>Wave speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\sigma_{\text{cm}}, \text{MPa})</td>
<td>(\sigma_{\text{pc}}, \text{MPa})</td>
<td>(\sigma_{\text{cd}}, \text{MPa})</td>
</tr>
<tr>
<td>720</td>
<td>705</td>
<td>2,75</td>
<td>82,1</td>
<td>8,0</td>
<td>20,2</td>
</tr>
<tr>
<td>705</td>
<td>690</td>
<td>2,75</td>
<td>82,1</td>
<td>8,0</td>
<td>20,2</td>
</tr>
<tr>
<td>690</td>
<td>675</td>
<td>2,78</td>
<td>79,8</td>
<td>7,9</td>
<td>27,5</td>
</tr>
<tr>
<td>675</td>
<td>660</td>
<td>2,78</td>
<td>79,8</td>
<td>7,9</td>
<td>27,5</td>
</tr>
<tr>
<td>660</td>
<td>645</td>
<td>2,76</td>
<td>72,8</td>
<td>7,0</td>
<td>27,6</td>
</tr>
<tr>
<td>645</td>
<td>630</td>
<td>2,76</td>
<td>72,8</td>
<td>7,0</td>
<td>27,6</td>
</tr>
<tr>
<td>630</td>
<td>615</td>
<td>2,80</td>
<td>65,1</td>
<td>6,8</td>
<td>33,6</td>
</tr>
<tr>
<td>615</td>
<td>600</td>
<td>2,80</td>
<td>65,1</td>
<td>6,8</td>
<td>33,6</td>
</tr>
</tbody>
</table>

The measurement of the average density (\(\gamma \)) of the test rock was carried out according to the formula:

\[
\gamma = \frac{q}{V}, \text{g/cm}^3
\]

(5)

where \(q \) – the mass of the sample, determined on technical scales with an accuracy of 0.01, g;

\(V \) – sample volume determined by hydrostatic weighing, cm\(^3\).

3-5 parallel volume density determinations were performed for each sample. The arithmetic mean of all definitions was taken as the final test result.

The true (specific) density (\(\gamma_u \)) was determined by measuring the mass of a unit volume of crushed dried rock according to the formula:

\[
\gamma_u = \frac{q_u}{V_u}, \text{g/cm}^3
\]

(6)

where \(q_u \) – mass of the crushed sample (mineral part of the rock), g;

\(V_u \) – volume of crushed rock (mineral part of the rock), cm\(^3\).

Two parallel determinations of the true density were made for each rock, then the average value was calculated with an accuracy of 0.01 [2].

The results of the research are spread across the horizons and summarized in summary table 2.

To destroy the rock mass in the quarry, a drilling and blasting method is used, the main task of which is to ensure the necessary lumpiness of the rock mass (65% - \(\text{dk} \leq 300 \text{ mm} \)). Primary crushing is carried out by the method of borehole charges (mass explosions). Blast wells with a diameter of 215 mm are drilled using high-performance ball drilling rigs of the DML LPE 1600/110 brand. The development of the deposit is planned in an open way, with 15-meter ledges. Cutting of oversized items is carried out by the shpurov method, overhead and cumulative charges. The calculation of the design specific consumption of explosives was adopted according to the methodology proposed by Academician V.V. Rzhevsky [7]:

\[
q_n = q_0 K_t K_{o.n} K_k K_{\text{з}} K_2 y_g,
\]

(7)

where \(q_0 \) - reference consumption of explosives [8]:

\[
q_0 = K_1 (\sigma_{\text{cm}} + \sigma_{\text{pc}} + \sigma_{\text{cd}}) + K_2 y_g,
\]

(8)

\(K_t \) - coefficient that takes into account the effect of fracturing of the mountain range,

\(K_{o.n} \) - coefficient that takes into account the degree of crushing,

\(K_k \) - correction factor that takes into account the number of open surfaces,

\(K_2 \) - correction factor for the degree of charge concentration in the array,

\(K_3 \) - correction factor for the height of the ledge,

\(K_{\text{з}} \) - correction factor for the consumption of explosives, taking into account the required degree of crushing,

\(K_1 \) и \(K_2 \) – empirical coefficients [7].
Table 3 - Calculated values of the design specific consumption of explosives

<table>
<thead>
<tr>
<th>Horizon, m</th>
<th>qₜ</th>
<th>Kᵣ</th>
<th>Kₘ</th>
<th>Kₑ</th>
<th>K₅</th>
<th>Kₑₑ</th>
<th>qₑ (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td>to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>705</td>
<td>0,124</td>
<td>0,69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>705</td>
<td>690</td>
<td>0,124</td>
<td>0,69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>690</td>
<td>675</td>
<td>0,124</td>
<td>0,69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>675</td>
<td>660</td>
<td>0,124</td>
<td>0,69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>645</td>
<td>0,120</td>
<td>0,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>645</td>
<td>630</td>
<td>0,120</td>
<td>0,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>615</td>
<td>0,106</td>
<td>0,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>600</td>
<td>0,106</td>
<td>0,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It follows from the data obtained that the rocks forming horizons of 720-600 m at the Koktaszhal deposit belong to the average degree of explosivity and to the category of explosivity - II [9].

Discussion of the results

To substantiate the specific energy intensity of drilling as a universal criterion for the strength of rocks and massifs, it is necessary to compare it with the specific energy intensity of explosive destruction [10].

Comprehensive research in this direction in production conditions in the 70-80-ies of the 20th century was conducted by Professor I.A. Tangaev, as a result, the following was noted:

1. the specific consumption of BB- q (kg/m³) of energy qₑ (Mcal/m³) is the coefficient of proportionality between the energy of the charge and its load, reflecting the strength properties of the medium:

 \[Q = q_V \] \hspace{1cm} (9)

2. the relationship between the specific energy intensity of drilling - e (kW·h/m³) and explosive destruction - qₑ (Mcal/m³) is approximated by the linear equation:

 \[qₑ = 0,15 + 0,011e \] \hspace{1cm} (10)

3. in accordance with the value e, kW·h/m, the value of the specific consumption of explosive q, kg/m³, can be calculated by the formula:

 \[qₑ = 0,24e + 0,16 \] \hspace{1cm} (11)

There is an unambiguous dependence of the explosivity on the velocity of propagation of longitudinal waves in rocks.

This is due to the close correlation with such characteristics of the medium as density, fracturing, anisotropy, etc. [10, 11].

Applying data on the velocity of longitudinal waves of rocks of the Koktaszhal deposit and indicators of the specific energy intensity of drilling of rocks similar in lithological, strength and elastic properties, we determine the relationship between them. (Figure 5).

There is an unambiguous dependence of the explosivity on the velocity of propagation of longitudinal waves in rocks.

This dependence can be represented by the following linear function:

\[e = 0.0004V_p + 0.2967 \] \hspace{1cm} (12)

Solving equations (12) and (11) together, we obtain the value of the specific explosive consumption qₑ, kg/m³, taking into account the specific energy intensity of drilling. Table 4.
Table 4 - Calculated values of the design specific consumption of explosives

<table>
<thead>
<tr>
<th>Horizon, m</th>
<th>Velocity of longitudinal waves (Vp), m/sec</th>
<th>Specific energy intensity of drilling, e, (kW·h/m)</th>
<th>Design specific consumption of explosive q (kg/m³) according to the Rzhovsky method, by drilling energy intensity, (kg/m³)</th>
<th>Difference, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>720-705</td>
<td>4547,69</td>
<td>2,116</td>
<td>0,69</td>
<td>0,68</td>
</tr>
<tr>
<td>705-690</td>
<td>4547,69</td>
<td>2,116</td>
<td>0,69</td>
<td>0,68</td>
</tr>
<tr>
<td>690-675</td>
<td>4552,46</td>
<td>2,118</td>
<td>0,69</td>
<td>0,67</td>
</tr>
<tr>
<td>675-660</td>
<td>4139,51</td>
<td>1,952</td>
<td>0,67</td>
<td>0,63</td>
</tr>
<tr>
<td>660-645</td>
<td>4139,51</td>
<td>1,952</td>
<td>0,67</td>
<td>0,63</td>
</tr>
<tr>
<td>645-630</td>
<td>4139,51</td>
<td>1,952</td>
<td>0,67</td>
<td>0,63</td>
</tr>
<tr>
<td>630-615</td>
<td>4211,92</td>
<td>1,981</td>
<td>0,62</td>
<td>0,64</td>
</tr>
<tr>
<td>615-600</td>
<td>4211,92</td>
<td>1,981</td>
<td>0,62</td>
<td>0,64</td>
</tr>
</tbody>
</table>

Conclusions

Comparative analysis shows good convergence of the results and suggests the legitimacy of using the specific energy intensity of drilling as a criterion characterizing the explosive destruction of rocks.

It should be noted that the data under consideration on the strength and elastic properties of rocks were obtained by laboratory means in samples, which does not guarantee their identity in the array.

The use of specific energy capacities of drilling and blasting makes it possible to obtain information for each well directly on the block and, in accordance with the characteristics of the array, set or adjust the energy and detonation parameters of charges and geometric parameters of the location of wells.

Conflict of interest

On behalf of all the authors, the correspondent author declares that there is no conflict of interest.

Acknowledgements

The authors express their gratitude to the management of Altai Polymetals LLP TGOC, who supported our research and provided all possible assistance.

Cite this article as: Ozhigin SG, Chunuev IK, Musin RA, Ty'an SG. Substantiation of the specific energy intensity of drilling as a criterion characterizing the explosive destruction of rocks on the example of the Koktaszhal deposit. Kompleksnoe Ispol'zovanie Mineral'nogo Syr'a = Complex Use of Mineral Resources. 2022;321(2):79-86. https://doi.org/10.31643/2022/6445.20

Кектасжал кен орны мысалында тау жыныстарының жарылғыш бузылуының сипаттайтын өлшем ретінде бұрғылаудың меншікті энергия сыйымдылығын негіздеу

Ожигин С.Г., Чунуев И.К., Мусин Р.А., Тян С.Г.

1 Караганды Техникалық Университеті, Караганды, Қазақстан
2 Қырғыз мемлекеттік Геология, тау-кен ісі және табиғи ресурстарды игеру университеті. академик Ө. А. Асаналиева, Қырғызстан.
жане серпімділік сипаттамаларын зерттеу әдістері туралы мәліметтер келтірілген.

Бұрылуадың нақты энергия сыйымдылығы мен тау жыныстарының жарылғыш бұзылуы
арасындағы байланысты зерттеу нәтижелері келтірілген. Бұрылуадың нақты энергия
сыйымдылығы мен серпімді бойлық, топындардың жағдайына арналған
корреляциялық байланысты қарастырылған.

"Коктасжал" кен орны жыныстарының
физикалық-механикалық қасиеттері бойынша зертханалық зерттеулердің нәтижелерін
пайдалана отырып, жарылғыштық көрсеткішінің дәстүрлі есебі мен бұрылуадың
энергетикалық параметрлерін ескере отырып, жарылғыштық көрсеткішінің есебі арасында
салыстырмалы талдая.

Түйін сөздер: Бұрылу, бұрылуадың энергия сыйымдылығы, жарылғыштық, тау
жыныстарының беріктігі.

Ожигин Сергей Георгиевич

Авторлар туралы ақпарат:

Техника ғылымдарының докторы, профессор. Караганда Технический Университет,
Караганда, Казахстан. ORCID ID: 0000-0003-2432-3851. Email: osg62@mail.ru

Чунуев Ишимбай Карыбаевич

Техника ғылымдарының докторы, профессор. Кыргыз мемлекеттік Геология, тау-
кен ісі және табиғи ресурстарды игеру университеті. академик Ө. а. Асаналиева, Бішкек,
Кыргызстан. Email: ichunuev@gmail.com

Мусин Равиль Альтавович

PhD, старший преподаватель. Карагандинский Технический Университет, Караганда,
Казахстан.

Тян Станислав Георгиевич

Докторант, Караганда Технический Университет, Караганда, Казахстан. ORCID ID:
0000-0002-3566-1437. Email: info@geo-in.kz

Обоснование удельной энергоемкости бурения как критерия,
характеризующего взрывное разрушение горных пород на примере
месторождения Коктасжал

Ожигин С.Г. 1, Чунуев И.К. 2, Мусин Р.А. 1, Тян С.Г. 1

1 Карагандинский Технический Университет, Караганда, Казахстан

2 Кыргызский государственный университет геологии, горного дела и освоения природных ресурсов им. академика У.А. Асаналиева, Бишкек, Кыргызстан

АННОТАЦИЯ

Буро-зрывные работы являются одной из важнейших составляющих горнодобывающей
промышленности. В настоящее время дальнейшее совершенствование и оптимизация
технологических процессов на горных предприятиях возможны преимущественно за счет
определения и постоянного контроля горно-технологических свойств массива горных
пород – их буримости, взрываемости и экскавируемости. Перспективная оценка
взрываемости пород в массиве, являющаяся основой проектирования и расчетов
параметров БВР, на данный момент возможна только с использованием энергетических
параметров технологических работ. В статье приведены сведения о методах изучения
прочностных и упругих характеристик пород месторождения «Коктасжал» и расчетах
показателя взрывного разрушения с учетом энергетических параметров бурения. Показана
обоснованность использования удельной энергоемкости бурения как критерия,
характеризующего взрывное разрушение горных пород.

Ключевые слова: Буримость, энергоемкость бурения, взрываемость, прочность пород.
References

[1] Proekt promyshlennoy razrabotki mestorozhdeniya Koktaszhal [Industrial development project of the Koktaszhal deposit]. TOO Altaj polimental, 2014. [in Russ.].

