ABSTRACT

Only a few works have been devoted to thermodynamic studies of the lead-tin system by methods including the volatile components evaporation process. When the binary system is separated into metals by distillation, the volatile component is removed from the alloy and the low-volatile component accumulates in the bottom products, that is, there are alloy composition changes over the entire concentration range. It is necessary to know the boundaries position of the melt and vapor coexistence fields on the state diagram, especially for solutions beneficiated with non-volatile metal to assess the quality of the vapor phase by the content of the low-volatile component. In this regard, the study has been completed with the purpose to clarify the values of the thermodynamic functions of the formation and evaporation of lead-tin melts required to calculate the boundaries of the liquid and vapor coexistence fields on the state diagram that enables us to judge the amount of a low-volatile component in the vapor phase under equilibrium conditions. The thermodynamic activity of lead was calculated, as well as the numerical integration of the Gibbs-Duhem equation using the substitution proposed by Darken is the thermodynamic activity and pressure of saturated tin vapor Based on the values of the saturated lead vapor pressure, determined by the boiling point method (isothermal version) for alloys predominantly of the lead edge of the phase diagram. The thermodynamic constants thus obtained will add to the base of physicochemical data and will be used to calculate the boundaries of the vapor-liquid equilibrium fields on the phase diagram, allowing to determine the possibility and completeness of the distillation separation of metals.

Keywords: Lead, tin, alloy, vapor pressure, thermodynamics, formation, mixing, evaporation, partial and integral quantities, entropy, enthalpy.

Introduction

The development of a vacuum-thermal technology for tin refining from lead impurities with subsequent industrial development [1-3] led to the emergence of a significant number of studies in the field of physical chemistry of lead-tin melts. Most of them are devoted to the study of thermodynamics and physical properties of the condensed phase.

The authors [4-11] have determined the thermodynamic functions of formation by various methods, [12-14] - the structure of melts and the associated effects of homogeneity and stratification.

Only a few papers are devoted to thermodynamic studies of the lead-tin system by methods including the process of evaporation of volatiles. The authors of the [4] paper conducted a
study of the thermodynamic properties of the lead-tin system in the entire range of alloy compositions at 730-790 °C based on the lead vapor pressure determined by the modified Knudsen method with the continuous weighing of the effusion cell. At the same time, the values of the lead activity were determined, and based on their thermodynamic functions of the components and solution, a conclusion about the molecular inhomogeneity in liquid alloys was made.

A physicochemical study of the evaporation process of the equimolar lead-tin alloy at 1,100 °C was performed in the [15] paper. The authors studied the dependence of the composition of the condensate on the evaporation time and found that the composition of the vapor above the solution and, therefore, the composition of the condensate is determined by the composition of the surface layer of the melt, which, in turn, depends on the atoms movement speed of the highly volatile component in the liquid alloy.

The thermodynamic study based on the values of the lead vapor pressure determined at 873-1,073 K by the method of evaporation from an open surface, was published in [16] paper. A positive deviation of the system from the law of ideal solutions was found, decreasing to the insignificant one with the temperature rising.

The values of the excess functions of the lead-tin system at 1,050 K, based on which it is possible to calculate the value of the saturated vapor pressure of the melt components under the assumption that the indicated constants are independent of temperature, are given in [17, 18].

Based on the results of all studies, as well as the refined values of the saturated vapor pressure of elemental tin and lead [19], it can be concluded that there are no technological difficulties in the distillation separation of alloys into separate metals.

However, during the development of technology to separate the multicomponent alloys, for example, metal concentrates from waste processing plants, during the distillation excreting of volatile metals (zinc, cadmium, lead) and the concentration of low volatile metals (copper, aluminum tin) in the bottoms, a noticeable amount of tin was found in the lead condensate.

When the binary system is separated into metals by distillation, the volatile component is removed from the alloy and the low-volatile accumulates in the bottom residue, that is, the availability of alloy composition changes over the entire concentration range. In order to assess the quality of the vapor phase by the content of the low-volatile component, it is necessary to know the position of the boundaries of the fields of coexistence of the melt and vapor on the phase diagram, especially for solutions enriched by non-volatile metal.

In [20] paper, based on the results of the study [16] at 873-1,073 K (600-800 °C), a calculation was performed and the phase diagram of the lead-tin system with fields of vapor-liquid equilibrium at atmospheric pressure, 100 and 10 Pa, does not correspond, however, to the cause of the increased tin content in the condensate.

The processes of distillation separation of alloys and refining of metals of the specified system occur at temperatures of 1,000-1,350 °C (1,273-1,623 K) and extrapolation of the vapor pressure values to the indicated temperatures could lead to inaccuracies in the calculations.

In this regard, a study aimed at clarifying the values of the thermodynamic functions of the formation and evaporation of lead-tin melts, which are necessary to calculate the boundaries of the fields of coexistence of liquid and vapor on the phase diagram, which is indicative of the amount of a low-volatile component in the vapor phase under equilibrium conditions.

Study object, research methods, and calculation methods

As an object of research, we used lead-tin alloys of predominantly lead edge of the phase diagram with contents of 93.93, 88.42, 83.08, 70.59, 50.65, and 30.87 at. % (96.43, 93.02, 89.55, 80.73, 64.18 and 43.80 wt. %) Pb, and the rest is tin.

The alloys were prepared by fusing metals in evacuated quartz ampoules with heating at 100 °C above the liquidus temperature, holding at this temperature for 2 hours and stirring with shaking, followed by quenching in water. Alloys were prepared using lead, 99.999 wt. % and tin, 99.99 wt. % of the principal element.

The partial thermodynamic mixing functions was the basis to find the activity value, defined as the ratio of the partial pressure of the component over the solution to the value of the saturated vapor pressure over the elemental metal:

\[a_i = \frac{\overline{P}_i}{P_i^o} \]

where: \(a_i \) is thermodynamic activity; \(\overline{P}_i \) is the partial pressure of steam; \(i \) is component; \(P_i^o \) is the saturated vapor pressure of the same component over the elemental metal.
The boiling point method (isothermal version) described in detail earlier [21] was used to determine the value of the saturated vapor pressure, the method is based on the significant increase in the evaporation rate when the external pressure and the saturated vapor pressure of the test substance are equal with a decrease in pressure above the melt at a given temperature.

Since the vapor pressure of elemental lead at temperatures of 1,200 – 1,300 °C (1,473 – 1,573 K) according to [19] is (3.5 - 6.5) 10⁴ times higher than the tin vapor pressure, it was considered that the total vapor pressure determined by the boiling point method corresponds to the saturated lead vapor pressure. Argon was used as a volume filler gas in the boiling point method.

The partial free energy of alloy formation was calculated as:

\[\Delta G_{\text{mix}}^i = RT \ln \alpha_i \]

- partial entropy of mixing \(\Delta S_{\text{mix}}^i \)
- partial enthalpy \(\Delta H_{\text{mix}}^i \) - partial free energy, partial entropy, and partial enthalpy of mixing is component, respectively. From now on, \(T \) is the temperature, K.

Integral mixing functions are calculated as the sum of the fractions of partial values.

Tin activity was found from the expression

\[a_{\text{Sn}} = \gamma_{\text{Sn}} \cdot x_{\text{Sn}} \]

Tin activity coefficient \(\gamma_{\text{Sn}} \) is determined by numerical integration of the Gibbs-Duhem equation using the auxiliary function proposed by Darken [22]:

\[\ln \gamma_{\text{Sn}} = - \ln \frac{\gamma_{\text{Pb}} \cdot x_{\text{Pb}} \cdot \gamma_{\text{Sn}}}{x_{\text{Sn}}} + \int_{x_{\text{Sn}}=0}^{1} \left(1 - x_{\text{Pb}} \right)^2 dx_{\text{Pb}} \]

and then the partial functions of tin mixing during alloy formation.

The partial free energy of evaporation is determined based on the values of the partial pressure of the saturated vapor of the melt components as:

\[\Delta G_{\text{evap}}^i = -RT \ln p_{i, \text{atm}} \]

where \(p_{i, \text{atm}} \) corresponds to the saturated lead vapor pressure (\(P_{\text{Pb}} \)).

The error in determining the thermodynamic constants is taken to be equal to the error in determining the values of the saturated lead vapor pressure, as the sum of the errors of independent measurements, %: temperature - 1; weighing - 0.1; pressure 0.5; approximation of experimental data - 6.18, equal to 7.78.

Results and discussion

The coefficients of the equations of the dependence of the saturated lead vapor pressure on temperature for each of the alloy compositions are given in Table 1, for each of the alloy compositions are given in Table 1, where the vapor pressure of the lead itself was determined by us earlier [23].

Table 1 - Coefficients of the equation of the dependence of the partial lead vapor pressure on temperature

<table>
<thead>
<tr>
<th>Lead content in the alloy:</th>
<th>ln (p_{\text{Pb}} [\text{atm}]) = (\frac{A}{T} + B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm. %</td>
<td>mass. %</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>93.93</td>
<td>96.43</td>
</tr>
<tr>
<td>88.42</td>
<td>93.02</td>
</tr>
<tr>
<td>83.08</td>
<td>89.55</td>
</tr>
<tr>
<td>70.59</td>
<td>80.73</td>
</tr>
<tr>
<td>50.65</td>
<td>64.18</td>
</tr>
<tr>
<td>30.87</td>
<td>43.80</td>
</tr>
</tbody>
</table>

The partial pressure of saturated lead vapor for the entire concentration range of the Pb - Sn system is represented by the expression:

\[\ln p_{\text{Pb}} [\text{atm}] = (-708 x_{\text{Pb}}^3 - 2368 x_{\text{Pb}}^2 + 743 x_{\text{Pb}} - 26525) \cdot T^{-1} + 0.197 x_{\text{Pb}} + 1.884 x_{\text{Pb}}^2 - 4.737 x_{\text{Pb}} + 25.177 + \ln x_{\text{Pb}} \]

The temperature dependence of the activity \((a_{\text{Sn}}) \) and the partial pressure of lead vapor \((P_{\text{Pb}}) \) for each of the compositions were described by

Arrhenius type equations. Then by approximating the dependence of the coefficients in the equations on the concentration of lead \((x_{\text{Pb}}) \) in the alloy, we obtained the temperature-concentration dependence of the activity \((a_{\text{Sn}}) \) and the partial pressure of tin vapor \((P_{\text{Sn}}) \).

The boiling point method (isothermal version) was used to determine the value of the saturated vapor pressure, the method is based on the significant increase in the evaporation rate when the external pressure and the saturated vapor pressure of the test substance are equal with a decrease in pressure above the melt at a given temperature.
Figure 1 - Isoactivities of lead (1, 2) and tin (3, 4) at temperature, K

The isoactivities of lead and tin at the boundary temperatures of processing polymetallic raw materials [1,000 – 1,300 °C (1,273 – 1,573 K)] are shown in Figure 1. The system, in contrast to the research data [16], is characterized by a slight negative deviation from the law of ideal solutions, which indicates some interaction between dissimilar metals in liquid form. The dependence of the activity coefficients of lead and tin depends little on temperature, and at 1,573 K (1,300 °C) the system is close to ideal.

The concentration dependences of the partial and integral entropies and enthalpies of mixing of lead-tin solutions are shown in Figures 2 and 3.

The integral entropy of mixing in the lead-tin system differs significantly from that for an ideal system, both in magnitude and in sign. This indicates a negative value of the excess function. The enthalpy of mixing is negative in the entire range of melt concentrations, therefore, the solutions are formatted exothermic, with the release of heat.

The integral entropy of alloy formation is approximated by the expression:

$$\Delta S_{\text{mix}}^{\text{Pb-Sn}} = -32,135 x_{\text{Pb}}^3 + 69,807 x_{\text{Pb}} - 47,627 x_{\text{Sn}}^2 + 9,955 \text{ J/(mol·K)},$$

enthalpy –

$$\Delta H_{\text{mix}}^{\text{Pb-Sn}} = 9,464 x_{\text{Pb}}^3 + 25,607 x_{\text{Pb}}^2 - 35,071 \text{ kJ/mol}$$

The values of the thermodynamic functions of evaporation of lead-tin system alloys are summarized in Table 2.

Figure 2 – Integral (1, 4) and partial (2, 3) entropies of mixing in the lead-tin system.

Figure 3 – Integral (1) and partial (2,3) enthalpies of mixing in the lead-tin system.

The partial entropies of lead and tin evaporation constant within the experimental error in the entire range of alloy concentrations. The partial enthalpy of metals evaporation is expected to increase as the concentration of each of the constituents in the system decreases. Integral functions are described by concentration equations:

$$\Delta S_{\text{Pb-Sn}}^{\text{evap}} = -7,215 x_{\text{Pb}}^3 + 10,499 x_{\text{Pb}}^2 - 16,549 x_{\text{Pb}} + 104,43 \text{ J/(mol·K)}$$

$$\Delta H_{\text{Pb-Sn}}^{\text{evap}} = -38,599 x_{\text{Pb}}^2 - 77,535 x_{\text{Pb}} + 300,95 \text{ kJ/mol}.$$
Integral functions are described by concentration equations:

\[
\Delta S_{\text{evap}}^{\text{Pb-Sn}} = -7.215x_{\text{Pb}}^3 + 10.499x_{\text{Pb}}^2 - 16.549x_{\text{Pb}} + 104.43 \text{ J/(mol K)}
\]

and

\[
\Delta H_{\text{evap}}^{\text{Pb-Sn}} = -38.599x_{\text{Pb}}^2 - 77.535x_{\text{Pb}} + 300.95 \text{ kJ/mol}
\]

Conclusions. As a result of the study conducted by the boiling point method at processing temperatures of metal concentrates from garbage processing, the values of the saturated vapor pressure of lead and its thermodynamic activity were determined, based on which the partial and integral entropies and enthalpies of formation of evaporation of liquid lead-tin alloys were calculated using known methods.

The values of saturated vapor pressure and thermodynamic constants produced in this way are used to construct a complete phase diagram, including the fields of coexistence of melt and vapor at atmospheric pressure and in a vacuum.

Similar works [24-28], performed at the Institute earlier, showed the practical significance and technological relevance.

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Acknowledgment

This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (grant AR 08855494-OT-20).

Table 2 – Partial and integral entropies and enthalpies of formation and evaporation of lead-tin alloys

<table>
<thead>
<tr>
<th>Alloy composition, mol. share.</th>
<th>(\Delta S_{\text{evap}}^{\text{Pb}}), J/(mol K)</th>
<th>(\Delta S_{\text{evap}}^{\text{Sn}}), J/(mol K)</th>
<th>(\Delta S_{\text{evap}}^{\text{Pb-Sn}}), J/(mol K)</th>
<th>(\Delta H_{\text{evap}}^{\text{Pb}}), kJ/mol</th>
<th>(\Delta H_{\text{evap}}^{\text{Sn}}), kJ/mol</th>
<th>(\Delta H_{\text{evap}}^{\text{Pb-Sn}}), kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb 0</td>
<td>91.42±7.11</td>
<td>-</td>
<td>91.42±7.11</td>
<td>184.29±14.34</td>
<td>-</td>
<td>184.29±14.34</td>
</tr>
<tr>
<td>Pb 0.9 Pb 0.1</td>
<td>91.06±7.08</td>
<td>105.57±8.21</td>
<td>92.51±7.20</td>
<td>185.13±14.40</td>
<td>335.06±26.07</td>
<td>200.12±15.57</td>
</tr>
<tr>
<td>Pb 0.8 Pb 0.2</td>
<td>91.00±7.08</td>
<td>106.03±8.25</td>
<td>94.00±7.31</td>
<td>186.69±14.52</td>
<td>326.09±25.37</td>
<td>214.57±16.69</td>
</tr>
<tr>
<td>Pb 0.7 Pb 0.3</td>
<td>91.20±7.10</td>
<td>105.45±8.20</td>
<td>95.48±7.42</td>
<td>188.93±14.70</td>
<td>314.00±24.43</td>
<td>228.06±17.74</td>
</tr>
<tr>
<td>Pb 0.6 Pb 0.4</td>
<td>91.61±7.13</td>
<td>104.69±8.14</td>
<td>96.84±7.53</td>
<td>191.80±14.92</td>
<td>314.00±24.43</td>
<td>240.68±18.72</td>
</tr>
<tr>
<td>Pb 0.5 Pb 0.5</td>
<td>91.26±7.17</td>
<td>104.01±8.09</td>
<td>98.09±7.63</td>
<td>195.28±15.19</td>
<td>309.74±24.10</td>
<td>252.51±19.64</td>
</tr>
<tr>
<td>Pb 0.4 Pb 0.6</td>
<td>92.74±7.22</td>
<td>103.54±8.06</td>
<td>99.22±7.72</td>
<td>199.33±15.51</td>
<td>306.42±23.84</td>
<td>263.58±20.51</td>
</tr>
<tr>
<td>Pb 0.3 Pb 0.7</td>
<td>93.13±7.25</td>
<td>103.32±8.04</td>
<td>100.26±7.80</td>
<td>203.92±15.86</td>
<td>303.95±23.65</td>
<td>273.94±21.31</td>
</tr>
<tr>
<td>Pb 0.2 Pb 0.8</td>
<td>92.88±7.23</td>
<td>103.39±8.04</td>
<td>101.29±7.88</td>
<td>209.00±16.26</td>
<td>302.25±23.52</td>
<td>283.60±22.06</td>
</tr>
<tr>
<td>Pb 0.1 Pb 0.9</td>
<td>90.58±7.05</td>
<td>103.75±8.07</td>
<td>102.43±7.97</td>
<td>214.56±16.69</td>
<td>301.27±23.44</td>
<td>292.60±22.76</td>
</tr>
<tr>
<td>Pb 0.01 Pb 0.9</td>
<td>-</td>
<td>104.43±8.12</td>
<td>104.43±8.12</td>
<td>-</td>
<td>300.95±23.44</td>
<td>300.95±23.44</td>
</tr>
</tbody>
</table>

Қорғасын-қалайы қорытпаларының түзілуі мен булануының термодинамикасы

1. Требухов С.А., Володин В.Н., Уланова О.В., Ниценко А.В., Бурабаева Н.М.

1 Satbayev University, «Металлургия және көм бойынша институты» АҚ. Алматы, Қазақстан
22 «DHE» AG, Цюрих, Швейцария

* Авторлар электрондық пошта: nuril_eng@mail.ru, n.burabaeva@satbayev.university
ТУЙІНДЕМЕ
Кромуналялық ұшқыштарының (компоненттерінің) булаңу процесінен тұратын әдістермен, араласу процесінен қалыңды заңларға қарсы зерттеледі, бірақ жұмыс таралуға үшін алғашқы қорғақы — қорғақы랴лық тұрғы.

АННАТОЦИЯ
Термодинамик көрсеткіштер мен фазалық диаграммалар арқылы қорғақың қорғалуына баяулық тағамдар және олардың қорғасының термодинамикалық белсенділігі мен термодинамикалық сұйықтық күшінің құрылуын белгілейді.

Термодинамика образования и испарения свинцово-оловянных сплавов

Требухов Сергей Анатольевич
- Технический юннат, Satbayev University «Металлургия және бойдім институту» АҚ, Алматы, Қазақстан; https://orcid.org/0000-0001-9708-0307, Email: vohubert@mail.ru

Володин Валерий Николаевич
- Бас ғылыми көрсеткіш, физика-математикалық ғылымдардын докторы, профессор, техникалық юннат, докторы, профессор, Satbayev University «Металлургия және бойдім институты» АҚ, Алматы, Қазақстан; https://orcid.org/0000-0003-0116-1423, Email: valodin_v@mail.ru

Уланова Ольга Владимировна
- Кандидат технических наук, зерттеулер және даму жұмындағы аспирантура жататын, Satbayev University «Металлургия және бойдім институты» АҚ, Алматы, Қазақстан; https://orcid.org/0000-0001-6753-0936, Email: nict@inbox.ru

Ниценко Алина Владимировна
- Технический юннат, Satbayev University «Металлургия және бойдім институты» АҚ, Алматы, Қазақстан; https://orcid.org/0000-0003-2183-2239, Email: Nuri_eng@mail.ru

Бурабаева Нурэлі Мурахатовна
- Технический юннат, Satbayev University «Металлургия және бойдім институты» АҚ, Алматы, Қазақстан; https://orcid.org/0000-0003-5072-6445, Email: n.burabaeva@satbayev.university

Статья поступила: 31 января 2021
Рецензирована: 16 февраля 2021
Принята к печати: 10 марта 2021

* Электронная почта автора: nuri_eng@mail.ru, n.burabaeva@satbayev.university

Термодинамика образования и испарения свинцово-оловянных сплавов

1 Требухов С.А., 2 Володин В.Н., 3 Уланова О.В., 3 Ниценко А.В., 1 Бурабаева Н.М.

1 Satbayev University, Институт металлургии и обогащения, Алматы, Казахстан
2 «DHZ» AG, Swiss Confederation, Цюрих, Швейцария
3電子郵件 автора: nuri_eng@mail.ru, n.burabaeva@satbayev.university
Литература

14. Попель П.С., Демина Е.Л., Архангельский Е.Л. Плотность и удельное электросопротивление расплавов Sn-Pb в

