Hydrodynamic modeling of field development using enhanced oil recovery methods

1* Moldabayeva G.Zh., 2 Agzamov A.Kh., 1 Suleimenova R.T., 1 Elefteriadi D.K., 1 Abileva S. Zh., 1 Baluanov B. A.

1 Satbayev University, Almaty, Kazakhstan
2 Karshi Engineering and Economic Institute, Karshi, Uzbekistan

* Corresponding author email: g.moldabayeva@satbayev.university; moldabayeva@gmail.com

Received: 23 February 2021
Peer reviewed: 10 March 2021
Accepted: 23 April 2021

Introduction

Evaluation work on alternating injection steam and water was carried out on the basis of geological and hydrodynamic modeling, by creating a thermal composite model of the selected site. A digital geological model of a field is a representation of productive formations and their host geological environment in the form of a set of digital data in a three-dimensional grid of cells.

The project of geological modeling of the sectors of the development objects of interest was created in the modeling program Petrel of Schlumberger, then the collected, processed and prepared data was loaded into it.

Experimental part

The geological model of the sector of the western section includes three productive horizons of the Lower Cretaceous deposits: A, B, and C. All deposits are oil [1].

The simulation consists of the following procedures:

1. Download all available data, including interpreted GMS, seismic, and sampling data;
2. Correlation and construction of a structural framework taking into account discharge violations;
3. Distribution of lithology and FCP [2].

A fragment of the horizontal correlation scheme is shown in Figure 1.
Structural modeling

The fundamental stage of geological modeling is the creation of a structural framework. Sequentially, the modeling process using a structural framework looks like this:

Construction of structural maps on the roof of horizons using stratigraphic chops (markers) on the roof of formations in wells.

Building a fault model. According to the available interpretation data, a fault model is constructed, in which each fault is represented by a surface, and these surfaces are correctly connected to each other in the intersection area.

The final stage of structural construction is the conversion of the structural framework into a 3D model consisting of cells of a given size, within which lithology and petrophysical properties can be distributed based on borehole data.

All structural maps were constructed using the Convergent Interpolation method with a grid size of 25m * 25m, the rotation angle is -1080, which corresponds to the direction of the seismic cube [3].

Creating a three-dimensional geological grid. The main stage in modeling is the construction of a three-dimensional grid (a framework that consists of cells with a set of digital geological data).

A properly constructed three-dimensional grid is the basis for building a correct geological model.

The size of the grid cells in the plane during geological modeling is 30x30 meters for all horizons. The number of vertical cells was chosen in such a way that the cell size was on average about 0.6 meters [2]. Such grid sizes are most optimal when constructing geological models, since on the one hand they are more comparable to the sampling step of GMS curves, and on the other hand they provide an acceptable number of cells in terms of calculation time. Discontinuous faults were modeled based on the results of 3D seismic interpretation. To avoid cell curvature when modeling tectonic faults in a 3D grid, the zig-zag type faults method was chosen. The grid characteristics of the three-dimensional geological model are presented in Table 1.
Table 1 - Characteristics of the sector grid

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Number of cells on the axis</th>
<th>Cell size by axis</th>
<th>Total number of cells by model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( N_x )</td>
<td>( N_y )</td>
<td>( N_z )</td>
</tr>
<tr>
<td>( A_1 )</td>
<td>42</td>
<td>55</td>
<td>25</td>
</tr>
<tr>
<td>( B )</td>
<td>42</td>
<td>55</td>
<td>21</td>
</tr>
<tr>
<td>( B )</td>
<td>42</td>
<td>55</td>
<td>22</td>
</tr>
<tr>
<td>total</td>
<td>42</td>
<td>55</td>
<td>68</td>
</tr>
</tbody>
</table>

Transfer of borehole data to the geological grid. In the future, the results of the GMS interpretation were transferred to the model cells located along the well trajectory. The correctness of their transfer was checked visually on the well section for each well. To create the average values of the lithology, the Coll curves were taken, for the PHIE porosity [2, 5].

Lithological modeling. To distribute the value of a continuous cube of facies in the inter-well space, we used the deterministic interpolation method Indicator kriging available in Petrel. In the constructed facies cube, the parameter values ranged from 0 to 1, dividing the volume of the simulated area into a collector and a non-collector.

Building a porosity cube. The porosity cubes were calculated after converting the GMS porosity to the grid cells for all wells within the permeable layers and conducting Data analysis. Further, the porosity was distributed using the stochastic Gaussian algorithm SGS (Sequential Gaussian Simulation).

To monitor the quality control of the porosity cube construction, histograms were used, which can be used to compare the results of common, averaged, and original GMS data [1, 2].

Construction of a sector hydrodynamic model of the Western section. The hydrodynamic sector is cut out of the geological model with the preservation of all structural structures and petrophysical properties. All vertical and horizontal geological heterogeneities are preserved.

The creation of a hydrodynamic model was carried out in the TNavigator software product of Rock Flow Dynamics using a composite core (e300) with the thermal option enabled, since steam-thermal treatment of wells (STTW) was carried out at this site and steam was pumped. Table 2 shows the parameters of the western sector.

Properties of fluids. In the sector model, a two-component PVT model was used, using the dependence of oil viscosity on temperature (Table 3).
Table 2 - Sector parameters

<table>
<thead>
<tr>
<th>Dimension</th>
<th>30x30x0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of wells</td>
<td>65</td>
</tr>
<tr>
<td>Start date of development</td>
<td>01.02.2001</td>
</tr>
</tbody>
</table>

Table 3 - Dependence of oil viscosity on temperature

<table>
<thead>
<tr>
<th>Temperature, ºC</th>
<th>Oil viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>700</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td>30</td>
<td>400</td>
</tr>
<tr>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>120</td>
<td>12</td>
</tr>
<tr>
<td>180</td>
<td>5</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 3. Dependence of oil viscosity on temperature

Table 4 - Results of determining RPP in the "oil-water" system on model № 1

<table>
<thead>
<tr>
<th>№ modes</th>
<th>Percentage of fluid in the flow, %</th>
<th>Saturation, fractions of units.</th>
<th>Phase permeability, μm²*10⁻³</th>
<th>Relative phase permeability, fractions of units.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oil</td>
<td>water</td>
<td>oil</td>
<td>water</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0,769</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>25</td>
<td>0,694</td>
<td>0,306</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>50</td>
<td>0,645</td>
<td>0,355</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>75</td>
<td>0,592</td>
<td>0,408</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>90</td>
<td>0,526</td>
<td>0,474</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>95</td>
<td>0,477</td>
<td>0,523</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>100</td>
<td>0,367</td>
<td>0,633</td>
</tr>
</tbody>
</table>

The boundary value of porosity for Cretaceous and Jurassic sediments is determined by the intersection of the boundary value of permeability with the trend of the dependence of the permeability coefficient on the porosity coefficient, respectively, equal to 20.6% and 18.2% (Fig. 4) [6-12].

Relative phase permeabilities and capillary pressures. Figure 5 shows the relative phase permeabilities used in the model.

Figure 4 - Dependence of the coefficient of permeability and porosity (chalk)
Permeability

When constructing the permeability cubes, the dependences obtained during laboratory core studies were used. But during the adaptation, the permeability multipliers were used for individual regions of wells, in which the operation was carried out using the technology of non-limiting sand removal to the bottom of the well (CHOPS – the technology of cold production of heavy oil with sand extraction). During the extraction of sand, long channels with increased permeability (wormholes) are formed, which grow from the well into the oil reservoir at distances of 200 m or more.

Modeling of thermal properties. Cubes of specific heat capacity and thermal conductivity were used to model the thermal properties of the rock. Since there are no initial data on these properties, the parameters were selected by reproducing oil production in the area using steam injection.

In all sections, the values were used: specific heat capacity (HEATCR) in sandstones of 1200 kJ/m3 K and in clays of 1600 kJ/m3 K; specific heat conductivity (THCONR) in sandstones of 1800 kJ/m/day K and in clays of 3000 kJ/m/day K.

Adaptation to the development history. Since the purpose of building a hydrodynamic model is to be able to plan development and predict the results of drilling wells and GTE, the model should adequately describe the development process. The results of the hydrodynamic calculations generated by the simulator should be close to the actual development history. Due to the fact that this model belongs to the category of the most complex – thermal-compasional, there are inconsistencies in the downhole adaptation. This is also due to the fact that the model is a sector, which accordingly requires the connection of side aquifers. The results of the adaptation are shown in Figures 7-8.

Calculation of forecast indicators for options. After preparing the model and carrying out the adaptation, forecasts of the main technological indicators of the development were made for different schemes of alternating steam-water injection, and different volumes of steam and water. 2 schemes of steam and water injection were modeled, steam with parameters 240°C and 40% dryness, water 20°C, injection period 3-3 and 1 scheme basic version: a total of 10 options (Table 5).
**Table 5 - Forecast by options**

<table>
<thead>
<tr>
<th>Variants</th>
<th>Loading System</th>
<th>Steam injection volume</th>
<th>Steam generators</th>
<th>Number of injection wells</th>
<th>Water injection volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic</td>
<td>11 t/h</td>
<td>2</td>
<td>3</td>
<td>50% - 100%</td>
</tr>
<tr>
<td>2</td>
<td>Situational</td>
<td>11 t/h</td>
<td>2</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>Chessboard</td>
<td>11 t/h</td>
<td>2</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>Chessboard</td>
<td>22 t/h</td>
<td>2</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>5</td>
<td>Chessboard</td>
<td>22 t/h</td>
<td>2</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>6</td>
<td>Chessboard</td>
<td>11 t/h</td>
<td>2</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>7</td>
<td>G shaped</td>
<td>11 t/h</td>
<td>2</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>8</td>
<td>G shaped</td>
<td>22 t/h</td>
<td>2</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>9</td>
<td>G shaped</td>
<td>22 t/h</td>
<td>2</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>10</td>
<td>G shaped</td>
<td>22 t/h</td>
<td>2</td>
<td>3</td>
<td>100%</td>
</tr>
</tbody>
</table>

**Figure 8 - Adaptation results for accumulated indicators**

**Figure 9 - Dynamics of project oil production and ORF**

The results of the forecasts for 10 variants were plotted on the graph (Fig. 9) for the convenience of visual analysis.

As can be seen from the dynamics of project oil production and ORF, the highest accumulated production is demonstrated by option 5.

**Conclusions**

The technology of alternating steam and water injection is aimed at increasing the displacement coefficient in poorly drained zones of the reservoir saturated with high-viscosity oil. This
technology was considered both as a replacement for traditional water flooding, and as a replacement for steam injection.

The interim results of the PILOT TESTS on the use of this technology were mixed. In some areas, a significant effect was obtained. For example, in the western section of the first facility, significant increases in production rates and additional oil production were obtained. At the same time, in some areas, a significant effect is not observed.

Thus, from the point of view of technological efficiency, option 5 is preferred - a staggered system of steam and water injection, the injection period is 3-3, the volume of steam and water injection is 22 t/h for 3 injection wells, the volume of water injection is 50% of steam for 3 injection wells, since it provides the highest ORP value (34.1% in 2034).

Conflict of interest. On behalf of all authors, the corresponding author declares that there is no conflict of interest.

Гидродинамическое моделирование разработки месторождений с применением методов повышения нефтеотдачи пластов

1 Молдабаева Г.Ж., 2 Агзамов А.Х., 1 Сулейменова Р. Т., 1 Елефтериади Д.К., 1 Абилева С. Ж., 1 Балуанов Б. А.

1 Satbayev University, Алматы, Казахстан
2 Каршинский инженерно-экономический институт, г. Карши, Узбекистан

* Электронная почта автора: g.moldabayeva@satbayev.university; moldabayeva@gmail.com

Статья поступила: 23 февраля 2021
Рецензирование: 10 марта 2021
Принята в печать: 23 апреля 2021

АННОТАЦИЯ
В данной статье рассматривается цифровая геологическая модель, перенос скважинных данных на геологическую сетку, моделирование технологии чередующейся закачки пара и воды. Чередующая закачка подразумевает циклическую закачку пара и воды в нагнетательную скважину на месторождениях высоковязких нефтей. Суть данной технологии заключается в том, что во время закачки пара на протяжении 2–4 мес. происходит прогрев пласта, приводящий к снижению вязкости и увеличению мобильности нефти. Далее наступает период закачки воды, во время которого продолжается выработка уже прогретой нефти поддержка пластового давления. Для цифрового геологического моделирования проводился сбор, обработка и подготовка следующих данных: список скважин, вскрывающих объект моделирования, координаты устьев скважин, алгитуда скважин, инклинометрия траекторий скважин, данные ГИС по скважинам, анализ скважин, пробуренных с отбором керна и оцифрованные сейсмические данные (структурные поверхности по кровле стратиграфических горизонтов, карты контактов, разломы, структурные карты по кровле целевых горизонтов с разломами, карты изохрон, карты скоростей).

Ключевые слова: моделирование, скважина, анализ, отбор керна, гидродинамическое исследование.

Информация об авторах:

Молдабаева Гульназ Жаксылыновна
Доктор технических наук, ассоциированный профессор кафедры «Нефтяная Инженерия», Satbayev University, 050013, Сатпаева 22а, Алматы, Казахстан. (in Eng). E-mail: g.moldabayeva@satbayev.university; moldabayeva@gmail.com

Агзамов Азан Хамидиллаевич
Доктор технических наук, профессор кафедры «Разработка и эксплуатация нефтяных и газовых месторождений» Каршинский инженерно-экономический институт, 180100, проспект Мустакилик, 225, г. Карши, Узбекистан.

Сулейменова Райха Таупиховна
Докторант кафедры «Нефтяная Инженерия», Satbayev University, 050013, Сатпаева 22а, Алматы, Казахстан. (in Eng). E-mail: raika_83@mail.ru, 830809400443-D@stud.satbayev.university, https://orcid.org/0000-0001-7995-5560.

Елефтериади Дмитрий Константинович
Докторант кафедры «Нефтяная Инженерия», Satbayev University, 050013, Сатпаева 22а, Алматы, Казахстан. E-mail: saulezh007@gmail.com.

Абилева Сауле Жаласбайкызы
Докторант кафедры «Нефтяная Инженерия», Satbayev University, 050013, Сатпаева 22а, Алматы, Казахстан. E-mail: saulezh007@gmail.com.

Балуанов Бахытжан Айтуарович
Докторант кафедры «Нефтяная Инженерия», Satbayev University, 050013, Сатпаева 22а, Алматы, Казахстан. E-mail: baluan101@gmail.com.

Reference


Литература