

https://doi.org/10.31643/2018.003 **22 November 2018**

Ермаханова Азира Муратовна,* PhD Исмаилов Марат Базаралиевич, д.т.н., профессор

Национальный центр космических исследований и технологий, Казахский национальный исследовательский технический Университет имени К. И. Сатпаева г. Алматы, Казахстан. E-mail: a.yermakhanova@mail.ru*

ORCID ID 0000-0002-2145-5122*

ВЛИЯНИЕ УГЛЕРОДНЫХ НАНОТРУБОК НА СТАДИЙНОСТЬ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭПОКСИДНОЙ СМОЛЫ И УГЛЕПЛАСТИКА

Azira Muratovna Yermakhanova* & Marat Bazaralievich Ismailov

National Centre for space research and technology JSC Kazakh National Research Technical University after K. I. Satpayev City Almaty, Kazakhstan a.vermakhanova@mail.ru'

ORCID ID 0000-0002-2145-5122*

INFLUENCE OF CARBON NANOTUBES ON STAGE OF STRESS-STRAIN STATE OF EPOXY RESIN AND CARBON FIBER REINFORCED PLASTICS

Annotation: The effect of carbon nanotubes on the elastic-strength properties of epoxy resin and carbon plastic was investigated. The epoxy resin in the form of Etal Inject-T compound, Sigratex KDK carbon fabric, Taunit-M carbon nanotubes conditionally named as CNT-1, as well as functionalized (modified) variety of them by grafting to the surface of new chemical groups: carboxylated - CNT-2, carboxyl-hydroxylated - CNT-3, amidated -CNT-4 were used in the work. The injection of CNT - 1 into epoxy resin or carbon fiber reinforced plastic did not produce the hardening. At a strain rate of up to 20 mm/min, the epoxy resin with CNT-2-4 consisting of three zones, practically does not affect the elastic zone, but it strengthens the plastic and elastic-plastic zones. It is established that at the strain rate ≥ 20 mm/min the three-zone structure of the epoxy resin passes into a single-zone deformation with parameters $\sigma_v = 110.5$ MPa, $\varepsilon_v = 5.05\%$, E = 2.15 GPa. Under the same conditions of the rate of deformation of carbon fiber reinforced plastic, zones of elastic, elastic-plastic and pseudoelastic deformation are observed. With an increase in the strain rate of 20 mm/min, the single-zone pseudoelastic deformation is characterized by the parameters $\sigma_s = 425$ MPa, $\varepsilon_s = 2.3\%$, $E_{ef} = 19.3$ GPa. The injection of carbon nanotubes CNT-2-4 into carbon fiber reinforced plastic increased the compressive strength by CNT-2 - 6% of CNT-3 - 12%, CNT-4 - 17%, modulus of elasticity by 13-20%.

Keywords: epoxy resin, carbon nanotubes, strength, strain, modulus of elasticity.

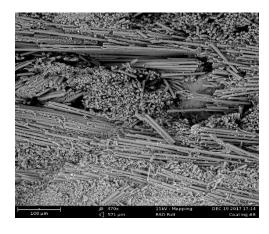
Аннотация: Проведены исследования по влиянию углеродных нанотрубок на упругопрочностные свойства эпоксидной смолы и углепластика. В работе использовались эпоксидная смола в виде компаунда «Этал Инжект-Т», углеродная ткань Sigratex KDK, углеродные нанотрубки «Таунит-М» условно названные - УНТ-1, а также функционализированные (модифицированные) их варианты путем привития к поверхности новых химических групп: карбоксилированные - УНТ-2, карбоксильно-гидроксилированные - УНТ-3, амидированные - УНТ-4. Введение первичных УНТ-1 в эпоксидную смолу и углепластик не дало упрочнения. При скорости деформации на сжатие до 20 мм/мин ЭС с УНТ-2-4, состоящей из трех зон практически не влияет на упругую зону, но упрочняет пластическую и упруго-пластическую зоны. Vстановлено, что при скоростях деформации ≥ 20 мм/мин трехзонная структура $\supset C$ переходит в однозонную деформацию с параметрами $\sigma_m = 110.5~M\Pi a,~\epsilon_m = 5.05\%,~E = 2.15~\Gamma\Pi a.~\Pi pu$ аналогичных режимах скорости деформации углепластика наблюдаются зоны упругой, упругопластической и псевдоупругой деформации. С увеличением скорости деформации 20 мм/мин однозонная псевдоупругая деформация характеризуется параметрами $\sigma_n = 425 \text{ MHa}, \ \epsilon_n = 2,3\%,$

22 November 2018

 $E_{3\phi}$ =19,3 ГПа. Введение в углепластик УНТ-2-4 увеличило прочность на сжатие УНТ-2 – 6% УНТ-3 – 12%, УНТ-4 – 17%, модуля упругости на 13-20%.

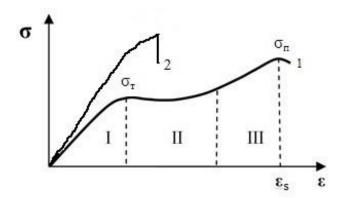
Ключевые слова: эпоксидная смола, углеродные нанотрубки, прочность, деформация, модуль упругости.

Введение


В настоящее время углепластики (УГП) на основе эпоксидных смол (ЭС), находят применение в различных отраслях промышленности, ракетостроение, благодаря высоким физико-механическим характеристикам. На практике, прочность ЭС и УГП характеризуют пределом прочности σ_{n} , модулем упругости Е полной деформацией при разрушении ε_{Π} [1,2]. В таблице 1 приведены прочностные характеристики составляющих УГП.

Tаблица $I-\Pi$ рочностные характеристики составляющих углепластика

Материал	σ, МПа	Е, ГПа	Источник
Углеродные нити (УН)	3950-5826	208-272	[3]
ЭС	130	2-4,5	[4]


Как видно из таблицы 1, по прочностным характеристикам, ЭС является слабым звеном УГП. Для повышения механических характеристик УГП необходимо в первую очередь увеличить прочность самой ЭС.

На рисунке 1 представлена микроструктура поверхности излома УГП при сжатии. Видно, что в месте разрушения УН отделились от ЭС. Процесс разрушения УГП под нагрузкой можно описать тремя последовательными процессами: деформация УГП как единого целого, отделение УН от ЭС, одиночные разрывы УН.

Pисунок 1 - Mикроструктура поверхности разрушения УГП при сжатии

Рисунок 2 – Типичные зависимости напряженнодеформированного состояния эпоксидной смолы (1) и углепластика (2) при одноосном сжатии

Характерные диаграммы зависимости напряженно-деформированного состояния ЭС и УГП представлены на рисунке 2.

Как видно из этого рисунка, кривая для ЭС имеет сложный характер на котором принято выделять зону упругой деформации (I) завершаемой пределом текучести $\sigma_{\rm T}$, далее следует ниспадающий и горизонтальный участок (ІІ) зоны пластической деформации,

https://doi.org/10.31643/2018.003 **22 November 2018**

которая плавно переходит к восходящему участку зоны упрочнения (III) вплоть до предела прочности σ_{Π} с разрушением образца [5,6]. Теория говорит, что при деформации на сжатие в упругой зоне I работают поперечно-ориентированные участки макромолекул без нарушения их ориентации. Деформации на этом участке обратимы. В зоне II происходит постепенная переориентация макромолекул путем их разворота поперек направления действующей силы. Молекулы после такого смещения не могут вернуться в первоначальное положение. На участке III развернутые макромолекулы придают образцу упругие свойства. Для случая УГП, кривая напряженно-деформированного состояния состоит из одной, близкой к упругой фазе, завершаемой разрушением образца.

Одним из методов упрочнения ЭС и УГП является их модификация путем введения углеродных нанотрубок (УНТ) [7]. УНТ могут вводиться как первичные, так и функционализированные, получаемые путем дополнительной их обработки с целью активации. Существует три основных метода функционализации УНТ, подразумевающий химическую прививку к поверхности нанотрубок функциональных групп [8]. Первый способ осуществляется путем обработки УНТ азотной кислотой, в результате которого их поверхности активируются привитыми карбоксильными группами СООН. Такие УНТ называют карбоксилированными. Вторым видом активации является обработка УНТ смесью кислот H₂SO₄+HNO₃. в результате поверхности углеродных нанотрубок покрываются привитыми карбоксильными СООН, карбонильными СО и гидроксильными OH[9, 10]. Такие УНТ условно можно назвать карбоксильногидроксилированными. Третьим видом функционализированных УНТ амидированные. Процесс их функционализации заключается во вторичной обработке карбоксилированных УНТ аммиаком, в ходе которого поверхности покрываются NH2 группами [11]. Для удобства введем следующие обозначения для перечисленных видов **УНТ-2**, УНТ: первичные УHТ-1, карбоксилированные карбоксильногидроксилированные – УНТ-3, амидированные – УНТ-4.

Ранее в работе [12] исследовано влияние УНТ-1-4 на конечную прочность ЭС и УГП, а также их зависимость от скорости деформации. Очевидно, представляет интерес данные по влиянию УНТ на структуру напряженно-деформированного состояния, а также упругие характеристики ЭС и УГП. Однако, эти вопросы практически не исследованы.

Целью данного исследования является изучение влияния УНТ-1-4 на структуру напряженно-деформированного состояния и упругие свойства ЭС и УГП.

Экспериментальная часть и обсуждение результатов

В качестве ЭС использован эпоксидный компаунд «горячего отверждения» Этал Инжект-T, состоящий из компонентов: A – эпоксидная смола, B – отвердитель в массовом соотношении 100:49,9 [13]. Модифицирующими добавками являлись углеродные нанотрубки «Таунит-М» (ООО «Нанотехцентр», г.Тамбов) и их модификации: УНТ-1, УНТ-2, УНТ-3,УНТ-4. УНТ-1 синтезированы CVD-методом в реакторе с нагреваемой подложкой из пропан-бутановой смеси на катализаторе Co/Mo/Mg/Al. Нанотрубки состоят из 6-10 цилиндрических графеновых слоев, внешний диаметр от 8 до 15 нм, внутренний диаметр от 4 до 8 нм [14]. Армирующим компонентом служила углеткань KDK Sigratex [15]. Образцы с УНТ-1-4 вводили в компонент А при температуре 40° С и диспергировали с целью разрушения агломератов УНТ в ЭС с помощью ультразвукового смесителя СТ-400А при рабочей частоте 65 кГц в течение 1 часа, затем добавляли компонент Б компаунда и механически перемешивали до гомогенного состояния. Для получения образцов отвержденной ЭС, жидкий компаунд с УНТ или без них, заливался и отверждался в цилиндрических формах диаметром 30 мм и высотой 38 мм. Процесс

отверждения проводили в режиме термической обработки в течение 5 ч. и интервале температур: 1 ч – 100°С, 3 ч – 150°С, 1 ч – 180°С, в условиях ступенчатого повышения температуры. Заготовки всех типов УГП изготавливали в виде пластин методом выкладки из 17 слоев углеткани по методике [16]. Сформованный образец укладывали в вакуумный мешок для последующего вакуумирования, затем помещали в сушильный шкаф, где происходило отверждение при температурных режимах аналогичных для ЭС. Размеры образцов УГП – 65х4х11 мм. Химический состав ЭС и УГП представлен в таблице 2. Измерение механической прочности базовых образцов ЭС и пластин УГП, а также с содержанием УНТ проводилась на сжатие на электромеханической испытательной машине Shimadzu AG-100 kNx и Zwick/Roell Z050 при скорости деформации 1 мм/мин согласно ASTM 6641/D6641 [17].

Таблица 2 — Химический состав экспериментальных образцов ЭС (№ 1-13) и УГП (№ 14-26)

	Химический состав, %										
Обра-	ЭС	УНТ-	УНТ	УНТ	УНТ-	Обра-	УГП	УНТ-	УНТ	УНТ	УНТ-
зец		1	-2	-3	4	зец		1	-2	-3	4
$N_{\underline{0}}$						$N_{\underline{0}}$					
1	100	-		-	-	14	100	-		-	-
2	99,95	0,05				15	99,95	0,05			
3	99,90	0,1				16	99,90	0,1			
4	99,85	0,15				17	99,85	0,15			
5	99,95		0,05			18	99,95		0,05		
6	99,90		0,1			19	99,90		0,1		
7	99,85		0,15			20	99,85		0,15		
8	99,95			0,05		21	99,95			0,05	
9	99,90			0,1		22	99,90			0,1	
10	99,85			0,15		23	99,85			0,15	
11	99,95				0,05	24	99,95				0,05
12	99,90				0,1	25	99,90				0,1
13	99,85				0,15	26	99,85				0,15

Результаты механических испытаний ЭС и УГП приведены на рисунках 3-6 и в таблицах 3-4.

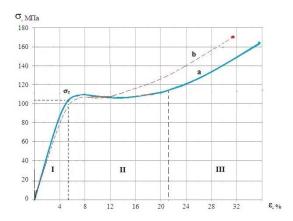


Рисунок 3 – Напряженно-деформированное состояние эпоксидной смолы с УНТ-4: а - №1; b – №13

https://doi.org/10.31643/2018.003 **22 November 2018**

На рисунке 3 видно, что для кривой (а) образца №1 наблюдаются три ранее описанные характерные зоны: упругая, пластическая, упруго-пластическая. Наибольшее отличие получены на образце №13 (ЭС модифицированная 0,15% УНТ-4) кривая (b). Кривые для образцов №2-12 находятся в промежутке. Результаты упруго-прочностных свойств образцов №1-13 приведены в таблице 3.

Образец	Содержание,	ε, %	σ,	Е т,
№	%		МΠа	ГПа
1	-	5,1	110	2,1
2	0,05	5,1	109	-
3	0,1	5,1	109	-
4	0,15	5,1	108	-
5	0,05	5,0	110	2,2
6	0,1	5,1	112	2,2
7	0,15	5,1	112	2,2
8	0,05	5,0	111	2,2
9	0,1	5,0	111	2,2
10	0,15	5,0	112	2,4
11	0,05	5,0	110	2,2
12	0,1	5,0	111	2,2
13	0,15	5,0	112	2,4

Таблица 3 – Упруго-прочностные свойства ЭС (скорость деформации 1 мм/мин)

На основании данных рисунка 3 и таблицы 3, можно сделать следующие заключения: 1) зона упругой деформации I практически не затронута влиянием УНТ, эта зона обратимой деформации, которая характеризуется параметрами σ_{τ} =111 МПа, ε = 5,1%, E_т=1,84 ГПа; 2) влияние УНТ в зоне II заключается в сокращении зоны пластической деформации, при этом кривая зоны III сдвигается влево. Наклон обеих кривых №1 и №13 практически сохраняется.

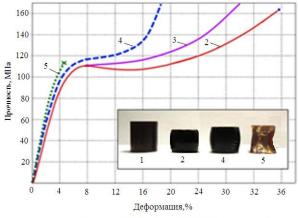
Влияние скорости деформации на напряженно-деформационное состояние ЭС приведено на рисунке 4, где видно, что с увеличением скорости от 1-20 мм/мин, зона упругих деформаций меняется слабо. При скоростях деформации ЭС:

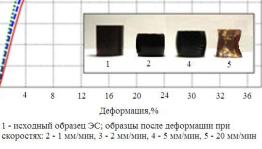
- 1 мм/мин: σ_T = 110 МПа, ϵ_T =5,1%., E=2,1 ГПа;
- 20 мм/мин: σ_T = 111 МПа, ϵ_T =5%, E=2,2 ГПа.

В среднем получается σ_T = 110,5 МПа, ϵ_T =5,05%, E=2,15 ГПа. Однако, скорость деформации влияет на две последующие зоны.

Приведенные выше данные говорят об устойчивости упругой зоны деформации ЭС, в виду этого объективной характеристикой ЭС, как конструкционного материала следует принять зону упругой деформации. Практическое применение ЭС целесообразно проводить в пределах упругой деформации $\sigma_T \le 110.5$ МПа, $\varepsilon_T \le 5.05\%$, E=2.15 ГПа, за граничных характеристик деформация необратима и пластическими составляющими, что возможно неблагоприятно для некоторых случаев применения ЭС, этот вопрос требует дополнительного изучения.

Перейдем к рассмотрению УГП. На рисунке 5 приведены экспериментальные кривые напряженно-деформированного состояния образцов УГП № 14 и №26 при разных скоростях деформации. В таблице 4 приведенные экспериментальные данные и





результаты расчета прочностных и упругих характеристик образцов зависимости от УНТ и скорости деформации.

Рисунок 4 – Напряженно-деформационное состояние ЭС при различных скоростях деформации

Рисунок 5 – Напряженно-деформированное состояние углепластика при скорости деформации 1 мм/мин: (а – образец №14; b – образец №26), при скорости деформации 20 мм/мин:(с – образец №14)

На кривой УГП без добавок УНТ (а) четко видны три зоны, эти зоны не повторяют зоны деформации ЭС, однако, являются их отражением. Зона І УГП слабо выражена, наклон в зоне II меньше, чем в зоне III, что говорит о том, что в зоне II имеет место пластическая составляющая, но она не в такой мере выражена как в случае ЭС. Зону I можно назвать упругой деформацией, зону II - упруго-пластической, зону III псевдоупругой. Наибольшее отличие между кривыми напряженно-деформированного состояния образцов №14 и №26, для образцов №15-25 носят промежуточный характер. Кривая деформации УГП с УНТ-4 на рисунке 5b отличается от кривой УГП без добавок УНТ (рисунок 5а) тем, что сокращена упруго-пластическая зона ІІ, путем перемещения зоны III влево. В отношении упругих свойств УГП, характеризуемых модулем упругости Е, строго говоря, применимо только к зоне ІІІ. Одновременно с Е целесообразно ввести так называемый эффективный модуль упругости Е_{эф}, как среднее для всего процесса деформации УГП. Результаты упруго-прочностных свойств образцов №14-26 приведены в таблице 4.

Таблица 4 - Упруго-прочностные свойства УГП (скорость деформации 1 мм/мин)

Образец	Содер-	ε1, %	σ1,	E _{1,}	εп,%	σ π,	Еπ,	E _{эф} ,
$N_{\underline{0}}$	жание, %		МΠа	ГПа		МΠа	ГПа	ГПа
14	-	1,8	183	10,3	2,9	410	14,1	20,6
15	0,05	-	180	-	-	410	-	-
16	0,1	-	181	-	-	409	-	-
17	0,15	-	181	-	-	409	-	-
18	0,05	1,2	144	12,0	2,6	417	16,0	19,5
19	0,1	1,2	144	12,0	2,6	421	16,1	19,7
20	0,15	1,2	145	12,1	2,6	426	16,3	20,4

21	0,05	1,2	144	12,0	2,6	420	16,2	19,7
22	0,1	1,2	144	12,0	2,6	429	16,5	20,3
23	0,15	1,2	144	12,0	2,7	455	16,8	19,4
24	0,05	1,2	144	12,0	2,6	425	16,3	20,0
25	0,1	1,2	145	12,1	2,8	466	16,6	20,1
26	0,15	1,2	145	12,0	2,8	476	17,0	19,4

Из представленных данных в таблице 4 видно, как и в случае с ЭС, первичные УНТ-1 не оказывают влияния на прочность сжатия УГП. Эффективность влияния УНТ в качестве упрочняющего модификатора располагаются в возрастающем в ряд УНТ-2, УНТ-3, УНТ-4. Введение модифицированного УНТ дают упрочнение с 6% до 17%, модуля упругости Е с 13% до 20%, модуль эффективности практически сохраняется в диапазоне 19,8 ГПа. Наибольший упрочняющий эффект применения УНТ получен на образце №26 УГП, содержащий 0,15% амидированных УНТ.

Рассмотрим влияние скорости деформации УГП на предел прочности, представленный на рисунке 6.

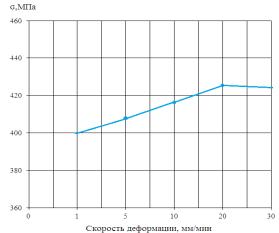


Рисунок 6 – Зависимость прочности углепластика от скорости его деформации

Из вышеприведенного рисунка 5 видно, что кривая деформации УГП при 20 мм/мин (рисунок 5c) отличается от кривой деформации 1 мм/мин тем, что она состоит только и одной зоны псевдоупругой деформации и характеризуется величиной $E_{3\varphi}$. Данный эффект согласуется с однозонной деформацией ЭС при скорости деформации 20 мм/мин. Модуль эффективности псевдоупругой деформации зоны III $E_{3\varphi}$ составляет 20,6 ГПа при скорости 1 мм/мин, при скорости 20 мм/мин — $E_{3\varphi}$ =E=19,3 ГПа. Из рисунка 6 следует, что увеличение скорости деформации 20 мм/мин приводит к увеличению σ_{Π} на 7 % с 401 МПа (1 мм/мин) до 425 МПа (20 мм/мин), с дальнейшим увеличением рост скорости деформации достигнутая величина σ_{Π} имеет тенденцию сохранения.

Выводы

При малых скоростях деформации на сжатие до 20 мм/мин в ЭС имеет три зоны напряженно-деформированного состояния: упругая, пластическая, упруго-пластическая. Образцы ЭС деформируются не разрушаясь. Модификация ЭС функционализированными УНТ практически не влияет на упругую зону, но упрочняет пластическую и упруго-пластическую зоны. При скоростях деформации ≥ 20 мм/мин образцы разрушаются как

SATBAYEV

https://doi.org/10.31643/2018.003 **22 November 2018**

хрупкое тело в конце упругой зоны. Во всех случаях упругая зона ЭС остается устойчиво постоянной, ее конец характеризуется параметрами: σ_T = 111 МПа, ε_T =5%, E=2,2 ГПа.

При скоростях деформаций УГП до 20 мм/мин наблюдаются зоны упругой (слабовыражена), упруго-пластической и псевдоупругой деформации, которые являются отражением зон деформации ЭС. При скоростях деформации ≥ 20 мм/мин трехзонная структура переходит в однозонную псевдоупругой деформации с параметрами: $\sigma = 425$ МПа, $\varepsilon_{\rm T}$ =2,3%, E=19,3 ГПа. Наибольший эффект упрочнения УГП дали амидированные УНТ-4, при их содержании 0,15% прочность возросла на 17%.

При использовании ЭС и УГП в качестве конструкционных материалов желательно их нагружать в пределах упругих зон, если нагрузки выходят за пределы упругой зоны, то появляются необратимые пластические деформации.

Литература

- 1. Каблов Е.Н., Кондрашов С.В., Юрков Г.Ю Перспективы использования углерод содержащих наночастиц в связующих для композиционных материалов. Российские технологии – Москва – 2013 – №8 – C. 28-46
- 2. Donald R. Paul, Clive B. Bucknall. Polymer Blends: Formulation and performance. 2000 V.2 -P.1224
- 3. Литвинов В.Б., Кобец Л.П., Токсанбаев М.С., Деев И.С., Бучнев Л.М. Струкутурно-механические свойства высокопрочных углеродных волокон. Композиты и наноструктуры – Москва – 2011 –№3
- 4. Типы полимерных матриц. [Электрон.ресурс] URL: https://studopedia.org/11-17152.html (дата обращения 10.07.2018)
 - 5. Callister, D. William. Material science and engineering: an introduction 7th edition, 2007 –c. 975
- 6. Jonathan N. Coleman, Umar Khan, Werner J. Blau, Yurii K. Gun'ko. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon − 2006 − T.44№ 9 − C.1624- 1652.
- 7. Ismailov M.B., Yermakhanova A.M.. Carbon nanoparticles influence on mechanical properties of epoxide resin and carbon composite. Review.//Complex use of mineral resources – Almaty – 2016. – T.4. – C.63-73
- 8. Дьячкова Т.П. Физико-химические основы функционализации и модифицирования углеродных наноматериалов: . Дис...канд.техн.наук: 02.00.04.// Национальный исследовательский университет «Московский институт электронной техники» - Тамбов – 2016 –412 с.
- 9. Никулин С.М., Ташкинов А.А., Шавшуков В.Е., Рожков В.Е., Чесноков В.В., Паукштис Е.А. Разработка метода введения многослойных углеродных нанотрубок в эпоксидные полимеры для повышения прочности материала. //Композиты и наноструктуры – Москва – 2014 –Т.7.№1 – С.34-40
- 10. Темиргалиева Т.С., Нажипкызы М., Нургайын А., Рахметуллина А., Динистанова Б., Мансуров 3.А. Синтез многостенных углеродных нанотрубок методом CVD и их функционализации.// Новости национальной академии науки Республики Казахстан – Алматы – 2017-Т.2.№422 – С.44-50
- 11. Дьячкова Т.П., Дружинина В.Н. Газофазное амидирование углеродных нанотрубок. Научный обзор. Технические науки – Тамбов – 2015 – №1 – С.172-182
- 12. Ismailov M.B., Yermakhanova A.M. About the mechanism of stress-strain state of epoxy resin by carbon nanotubes. 2017 International Conference on Energy Development and Environmental Protection (EDEP 2017). Shanghai – 2017 – c. 106-111
- 13. ТУ 2257-Инжект-18826195-12. [Электрон.ресурс] URL(дата обращения 15.06.2018): http://www.epital.ru/infu/t.html
- 14. ТУ-2006, ООО2166-001-02069289. [Электрон.ресурс] URL(дата обращения 15.06.2018): http://nanotc.ru/producrions/87-cnm-taunit
- 15. Sigratex KDK 8043/120. [Электрон.ресурс] URL (дата обращения 15.06.2018): http://www.vitrofiber.com/data/archivo/SIGRATEX%20KDK%208043e.pdf
- 16. Бгатов В.И., Кропивенцев Д.А., Шахмистов В.М. Технология изготовления агрегатов легких самолетов из полимерных композиционных материалов. Самарский государственный аэрокосмический университет — Cамара — 2006 — C.57-66
- 17. ASTM International Standard Test Method for Determining the Compressive Properties of Polymer Matrix Composites Laminates Using a Combined Loading Compression (CLC) Test Fixture, ASTM D 6641 / D 09. [Электрон.ресурс] URL (дата обращения 15.06.2018): https://www.astm.org/DATABASE.CART/HISTORICAL/D6641D6641M-09.htm